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Abstract

The increasing connectivity among vehicles increases their attack surface and challenges their
security. This thesis explores approaches to improve analysis and design of security for in-
vehicle networks. Therefore, a design time security analysis, a runtime authentication and
authorization framework, and a flexible scheduling scheme, efficiently enabling security on
FlexRay are presented. The infotainment system of an electric taxi is introduced as a design
experience to demonstrate the necessity of new approaches in automotive security.

Vehicles today include a large number of electronics in form of Electronic Control Units
(ECUs). These ECUs are interconnected in internal vehicle networks implementing distributed
control tasks. With the trend of rising interconnectivity and the Internet of Things (IoT), these
in-vehicle networks are increasingly connected to other vehicles and the Internet. While the
internal vehicle networks are shielded with gateways and firewalls, these protection mechanisms
are not impenetrable. As for these external interfaces the same protection mechanisms as on the
Internet are used, the same types of attacks can be applied. Once having access to the vehicle
network, an attacker often has as many possibilities for influence as the vehicle owner or an
authorized workshop. These internal networks consist of specialized automotive components,
are often not sufficiently segmented or secured, and messages are transmitted unencrypted.

Combining security and automotive real-time systems is challenging in many ways. The
heterogeneity and complexity of automotive communication systems and their interconnections
make the quantification of security a difficult task. Lower computational capabilities and net-
work bandwidth, coupled with the real-time behavior in automotive systems makes implemen-
tation of computation and bandwidth intensive security challenging. New solutions are required
to address security in the automotive domain in context of not only functional, but also real-time
requirements.

This thesis explores approaches to (1) analyze security of in-vehicle networks at design
time, (2) secure network traffic efficiently through authentication and authorization at runtime,
and (3) enable security on legacy communication systems. These approaches are motivated in
context of the infotainment system of an electric taxi. The interaction of passengers with the
infotainment system opens an attack vector on safety-critical in-vehicle systems and requires
security to be a priority.

The first approach targets the problem of quantifying the security of architectures and forms
the basis for evaluation of all other approaches. It is not straightforward to evaluate the security
of a network. No method to quantify the security of automotive networks currently exists. In
this thesis, the Security Analysis for Automotive Networks (SAAN) is proposed. SAAN uses
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probabilistic model checking to calculate the security of automotive networks, based on the
architecture and expert evaluations of components. Evaluations of SAAN prove its capabili-
ties to detect security flaws and compare automotive architectures in terms of security. SAAN
employs an automotive-specific model generation, taking into account the specific security de-
pendencies in the automotive architecture. These dependencies are formulated as rules and form
the basis for state-space reduction in the model. By reducing the model size, the performance
of the model checking can be improved by two to three orders of magnitude over state of the art
model generation.

After establishing the ability to analyze networks for security, the second approach is cen-
tered around securing in-vehicle network traffic efficiently. To secure traffic, it is required
to authenticate communication participants and authorize messages. This is typically ensured
by authentication frameworks. Traditional authentication frameworks have high computation
and bandwidth requirements, incompatible with automotive networks. This thesis proposes the
Lightweight Authentication for Secure Automotive Networks (LASAN). LASAN is specifi-
cally tuned to the automotive environment, leveraging on the fixed network structure to reduce
evitable flexibility in the protocols and minimize message sizes and thus bandwidth require-
ments. Splitting asymmetric and symmetric protocol components distributes the computational
requirements and thus reduces the delays in time-critical phases of the system. Evaluations
show improvements of setup latency of two to three orders of magnitude over the state of the
art. Besides improved efficiency, LASAN can be easily integrated with existing automotive
processes, such as Over-The-Air (OTA) updates or workshop maintenance and repair.

The third approach targets the problem of security in legacy communication systems. Ex-
isting time-triggered communication systems, such as FlexRay, are highly limited in their flex-
ibility regarding message lengths and transmission times. This limits the entropy available for
security, allowing brute-force attacks on cryptographic keys, effectively rendering employed
security mechanisms useless. The policy-based scheduling for FlexRay presented in this thesis
enables a higher flexibility for messages on the bus by abstracting the bond between time-
triggered slots and messages. Messages are flexibly arranged in a virtual communication layer,
before being divided into slots. Thus, messages can be transmitted priority-based and messages
longer than one slot lengths can be transmitted. This allows the implementation of authentica-
tion frameworks and increases the available entropy per message through enlargement, support-
ing encryption efficiently. Through the underlying time-triggered system, worst-case response
times can be calculated efficiently. Evaluations show improvements in message transmission
latencies by close to one order of magnitude over conventional FlexRay scheduling. At the
same time, flexibility for message sizes and periods is increased significantly.

The security approaches in this thesis are closely linked. Without a flexible message trans-
mission scheme, authentication protocols cannot be implemented. Without an evaluation option
for security, quantifying the impact of an authentication framework is highly complicated. With-
out an authentication framework, secure setup of architectures is not possible. The proposed
approaches spans across both the design time and runtime aspects of automotive communica-
tion system development. A tight integration is key to security in automotive networks. This
thesis lays the groundwork for this.



Zusammenfassung (German Abstract)

Die zunehmende Vernetzung von Fahrzeugen erhöht auch deren Angriffsfläche gegenüber Ma-
nipulationen und bringt neue Herausforderungen für deren Informationssicherheit (Automo-
tive Security) mit sich. Diese Dissertation stellt Ansätze zur Verbesserung des Designs und
der Analyse von Fahrzeugnetzen vor. Es werden eine Sicherheitsanalyse zur Entwurfszeit, ei-
ne Authentifizierungs- und Authorisierungsmethodik zur Laufzeit und ein flexibler Scheduling-
Ansatz zur effizienten Implementierung von Sicherheit auf FlexRay vorgestellt. Um den Bedarf
neuer Ansätze im Bereich Automotive Security zu demonstrieren, wird das Infotainmentsystem
eines elektrischen Taxis als Fallstudie vorgestellt.

Aktuelle Fahrzeuge beinhalten eine große Anzahl elektronischer Steuergeräte, sogenann-
te Electronic Control Units (ECUs). Diese Steuergeräte sind über fahrzeuginterne Netzwerke
verbunden um verteilte Steuerungsaufgaben zu realisieren. Durch die zunehmende Vernetzung
und das Internet der Dinge (Internet of Things, IoT) werden diese internen Fahrzeugnetze im-
mer häufiger mit anderen Fahrzeugen und dem Internet verbunden. Obwohl die internen Kom-
munikationsnetze in vielen Fällen mit Firewalls und Gateways abgeschottet sind, so können
diese Schutzmechanismen doch umgangen werden. Da für diese externen Verbindungspunkte
die gleichen Schutzmechanismen wie für Geräte im Internet eingesetzt werden, sind diese auch
für die gleichen Attacken empfänglich. Sobald ein Angreifer diese Barrieren überwunden und
Zugang zu den internen Fahrzeugnetzen hat, hat dieser oft genauso viele Möglichkeiten der
Einflussnahme wie der Besitzer des Fahrzeugs oder eine autorisierte Werkstatt. Die internen
Fahrzeugnetze bestehen aus speziellen automobilen Systemen und sind oft nicht ausreichend
segmentiert und gesichert. Nachrichten werden meist unverschlüsselt übertragen.

Die Kombination von Sicherheit und automobilen Realzeitsystemen birgt viele Herausfor-
derungen. Die Varianz und Komplexität automobiler Kommunikationssysteme und deren Ver-
bindungen erschweren die Quantifizierung der Sicherheit deutlich. Geringere Prozessorleistung
und Datenraten, in Kombination mit dem benötigten Realzeitverhalten in automobilen Syste-
men, erschweren die Implementierung von Sicherheit deutlich, da diese oft sehr rechen- und
bandbreitenintensiv ist. Neue Lösungen sind nötig um Sicherheit im automobilen Bereich nicht
nur funktional, sondern auch mit korrektem Realzeitverhalten umzusetzen.

In dieser Dissertation werden Ansätze vorgestellt um (1) die Sicherheit von internen Fahr-
zeugnetzen zur Entwurfszeit zu analysieren, (2) Datenübertragungen zur Laufzeit effizient zu
authentifizieren und autorisieren und (3) Sicherheit auf existierenden Kommunikationssyste-
men zu etablieren. Diese Ansätze werden im Zusammenhang des Infotainmentsystems eines
elektrischen Taxis erläutert. Dort eröffnet die Einbindung von Passagieren in das System eine
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Angriffsmöglichkeit auf sicherheitsrelevante interne Fahrzeugsysteme und erfordert daher die
Priorisierung der Absicherung des Systems.

Der erste in dieser Arbeit vorgestellte Ansatz fokussiert sich auf die Quantifizierung der Si-
cherheit von Fahrzeugarchitekturen und kann damit als Grundlage zur Evaluation aller weiteren
Ansätze dienen. Sicherheit in Netzwerken zu evaluieren ist nicht trivial. Derzeit existiert kei-
ne Evaluationsmöglichkeit fuer die Sicherheit in automobilen Netzwerken. Aus diesem Grund
wird in dieser Dissertation die „Security Analysis for Automotive Networks“ (SAAN) vorge-
stellt. Basierend auf der Netzwerkarchitektur und der Bewertung einzelner Komponenten durch
Sachverständige nutzt SAAN probabilistic Model Checking, um die Sicherheit von automobilen
Netzen zu berechnen. Die Fähigkeiten von SAAN, Sicherheitslücken zu finden und die Sicher-
heit automobiler Architekturen zu vergleichen wird durch Evaluation des Ansatzes bestätigt.
SAAN nutzt eine spezielle, auf den Automobilbereich angepasste Modellgenerierung, welche
die spezifischen Sicherheitsabhängigkeiten in automobilen Architekturen berücksichtigt. Diese
Abhängigkeiten werden als Regeln definiert und bilden die Basis zur Reduktion des Zustands-
raums. Durch die Reduzierung der Modellgröße wird die Laufzeit des Model Checkings gegen-
über dem Stand der Technik um zwei bis drei Größenordnungen verbessert.

Nachdem die Möglichkeit zur Sicherheitsanalyse von Netzwerken etabliert ist, konzentriert
sich der zweite im Rahmen dieser Arbeit entwickelte Ansatz auf die effiziente Absicherung des
Datenverkehrs im Fahrzeug zur Laufzeit. Um diesen Verkehr abzusichern, ist es erforderlich, die
Kommunikationspartner zu authentifizieren und die Nachrichtenübertragungen zu autorisieren.
Dies wird üblicherweise durch Authentifizierungssysteme erreicht. Existierende Authentifizie-
rungssysteme haben hohe Anforderungen an Rechenleistung und Datenrate, welche nicht mit
automobilen Netzwerken kompatibel sind. In dieser Dissertation wird deshalb „Lightweight
Authentication for Secure Automotive Networks“ (LASAN) vorgestellt. LASAN ist speziell
auf die automobile Umgebung angepasst und nutzt die starre Netzwerkstruktur in automobilen
Netzen zur Reduktion nicht benötigter Flexbilität. Gleichzeitig wird die benötigte Nachrichten-
größe minimiert. Diese Maßnahmen reduzieren die benötigte Bandbreite. Durch das Trennen
von asymmetrischen und symmetrischen Protokollkomponenten wird die Rechenlast zeitlich
verteilt und damit Verzögerungen in zeitkritischen Phasen des Systems minimiert. Die Evalua-
tion des Ansatzes zeigt Verbesserungen der Latenz im Kommunikationsaufbau von zwei bis
drei Größenordnungen im Vergleich zum Stand der Technik. Neben den Effizienzverbesserun-
gen erlaubt LASAN eine einfache Integration in den automobilen Lebenszyklus und unterstützt
damit beispielsweise Over-The-Air (OTA) Updates oder Wartung und Reparaturen.

Der dritte in dieser Arbeit vorgestellte Ansatz beschäftigt sich mit dem Problem der Sicher-
heit in existierenden Kommunikationssystemen. Existierende zeitgesteuerte Kommunikations-
systeme wie FlexRay sind in ihrer Flexibilität bezüglich Nachrichtenlänge und Übertragungs-
zeiten sehr limitiert. Dies begrenzt die Entropie, welche für Sicherheitsmaßnahmen zur Verfü-
gung steht, und erlaubt damit Brute-Force-Angriffe auf kryptografische Schlüssel. Hierdurch
werden die eingesetzten Sicherheitsmaßnahmen wertlos. Das in dieser Dissertation präsentier-
te „Policy-based Scheduling for FlexRay“ erlaubt mehr Flexibilität für Nachrichten auf dem
Bus, indem die Verbindung zwischen Zeitschlitzen und Nachrichten abstrahiert wird. Nach-
richten werden flexibel in einer virtuellen Kommunikationsebene angeordnet, bevor diese in
Zeitschlitze geteilt wird. Auf diese Weise können Nachrichten sowohl prioritätsbasiert als auch
mit Nachrichtenlängen von mehr als einem Zeitschlitz übertragen werden. Dies erlaubt die Im-
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plementierung von Authentifizierungssystemen und erhöht die zur Verfügung stehende Entro-
pie pro Nachricht, was wiederum effiziente Verschlüsselung ermöglicht. Durch das zugrunde
liegende zeitgesteuerte System können die maximalen Laufzeiten für Nachrichten effizient be-
rechnet werden. Auswertungen zeigen, dass Latenzen bei der Übertragung von Nachrichten
im Vergleich zu Standard FlexRay um nahezu eine Größenordnung verringert werden können.
Gleichzeitig erhöht sich die Flexibilität von Nachrichtengrößen und -perioden signifikant.

Die Ansätze in dieser Dissertation sind eng miteinander verbunden. Ohne ein flexibles
Nachrichtenübertragungssystem können Authentifizierungssysteme nicht implementiert wer-
den. Ohne Evaluationsmöglichkeiten ist es sehr kompliziert den Einfluss von Authentifizie-
rungssystemen auf die Sicherheit zu bestimmen. Ohne Authentifizierungssystem ist es nicht
möglich eine Architektur sicher einzurichten. Die vorgestellten Ansätze erstrecken sich somit
sowohl über Entwurfs- als auch Laufzeitaspekte der Entwicklung von automobilen Kommuni-
kationssystemen. Eine enge Integration ist der Schlüssel zu Sicherheit in automobilen Netzwer-
ken. Diese Dissertation schafft eine Basis hierfür.
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1
Introduction

Vehicles today contain a large number of assistant and entertainment functions. These func-
tions are realized as electronic components running control software. Such electronics are used
throughout the vehicle, covering all functional domains. Advanced Driver Assistance Systems
(ADASs) such as lane keeping and braking assistants, as well as autonomous vehicles rely heav-
ily on software, processing the input of sensors distributed around the vehicle and computing
actions to take for the actuators in the vehicle. In case of a lane keeping assistant, the sensor
input might originate from a camera system. An ECU processes this input, computes how much
the steering needs to be actuated and sends appropriate commands to the steering wheel motor.
Today, such functions are core elements in the vehicle, both from a safety, as well as a business
perspective. On the one hand, these systems can avoid accidents, on the other, they heavily
influence the decision of the customer to buy or forgo a vehicle [142].

To achieve the required functionality, multiple sensors, actuators and computational units
(ECUs) need to be interconnected. The sensors and actuators are typically attached to ECUs as
well, for filtering, pre-computation and encoding of data [139]. The networks, or Electric/Elec-
tronic (E/E) architectures, existing in vehicles today have been designed at times when vehicles
were single, non-interconnected units. In recent years, this has changed significantly, as vehi-
cles are equipped with Internet connections, WiFi, cellular (3G, 4G) and vehicle-to-X (v2X)
connections, among others. Nowadays, most vehicles on the market have some sort of intercon-
nection. While the internal networks slowly develop to adjust to these new requirements, they
have not been designed with security in mind. Attacks on single vehicles, as well as attacks
on vehicle fleets over Internet connections are becoming a reality [107]. The interconnection
of insecure vehicle networks to the Internet is reminiscent of the interconnection of the first
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computer networks to the Internet and the resulting security issues in the 1980s. However, the
security in vehicle networks is on many levels more concerning than the security in personal
computer systems, as the vehicle networks and the connected ECUs have direct influence on
the safety of the vehicle and its passengers.

The goal of this thesis is to advance secure communication in vehicles by contributing ap-
proaches for analysis and design of secure communication. The security of vehicles is analyzed
and improvements are suggested based on the experience gained by designing and construct-
ing the electric taxi EVA. EVA is a purpose-built electric taxi for tropical megacities developed
and built in TUM CREATE. The lessons learned when securing the vehicle networks in EVA
will motivate the remainder of the thesis, showing how to secure the communication in vehicle
networks and how to evaluate this security. Furthermore, the challenges with security in the
existing communication system FlexRay are outlined and one approach to solve these is shown.

In this chapter, the basic knowledge of automotive communication systems and network
security is conveyed. Further, the challenges existing when combining these two domains are
laid out. The detailed contributions of this thesis and the integration with existing work are
shown.

1.1 Automotive Electrical/Electronic (E/E) Architectures

To understand the challenges to security in vehicles, the basic networking mechanisms need to
be understood. In the following, an overview over E/E architectures in vehicles with a focus on
existing and upcoming automotive bus systems is given.

Typically, automotive communication systems follow a bus structure (see Figure 1.1(c)).
In many cases, these buses are interconnected by a central gateway in a star architecture (see
Figure 1.1(a)). This concept is slowly changing, however, due to the introduction of functional
domains, headed by a domain controller and interconnected over a backbone, typically in con-
junction with a central gateway (see Figure 1.1(b)). The chosen architecture depends on the
complexity, bandwidth and real-time requirements of the vehicle (see Section 1.1.1). Only re-
cently, bus systems with sufficient bandwidth for backbone networks have been developed (see
Section 1.1.3) [142].

The ECUs in vehicle architectures take up diverse tasks, from sensing tire pressure over
user inputs via buttons to computations for systems such as Anti-lock Braking System (ABS)
or Electronic Stability Program (ESP), and actuation of motor and brakes, among many others.
ECUs will be shortly explored in Section 1.1.2.

1.1.1 Requirements

Based on the functions the vehicle network is to perform, the requirements on software and
hardware for ECUs and communication systems can be defined [103]. Note that some of the
requirements depend on the type of application. Some examples will be given in the following.
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Figure 1.1: Comparison of architecture variants: (a) Hierarchical bus systems with central gateway, (b)
division into functional domains with domain controllers (DC), high-bandwidth backbone and central
gateway (CGW) and (c) traditional single bus system.

Cost. The overarching concern for vehicle architectures is cost. The minimization of cost
for all components is key from the perspective of business model of the Original Equipment
Manufacturers (OEMs) where revenues rise with lower production cost. Within this work,
however, cost is not the main consideration. Whenever possible, cost is considered, e.g. by the
reuse of existing elements, but this thesis is focused on the technical point of view on vehicle
networks.

From the technical point of view, automotive architecture requirements can be characterized
by their bandwidth demand, real-time capabilities, as well as number of devices, or, on a higher
abstraction level, number of functions. In the following, we will quickly explain these require-
ments, before describing implementations addressing these requirements in more detail in the
next section.

Bandwidth. Note that bandwidth demand strongly depends on the organization of the archi-
tecture. The drivetrain domain, e.g., typically requires less bandwidth than the infotainment
domain. Overall, bandwidth demand in vehicle architectures is rising sharply and strongly
driven by ADASs and infotainment systems. With an increasing amount of cameras and other
data intensive sensors such as Lidar, the required bandwidth for data transmissions rises quickly.
When transmitting High-Definition (HD) video data, as required by assistance systems such as
lane keeping assistants, data rates of 1 to 18 MBit/s are required for a single camera, depending
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on resolution, encoding, frame rate, etc. Traditional bus systems, such as shown in Figure 1.1(c)
are in many cases not able to cope with such bandwidth demand. These networks have been de-
signed to transmit control data, which in most cases is limited to messages of less than 2 Bytes
length per application and data rates of less than 1 kBit/s per stream. Thus, new architectures
and networks have been developed, allowing to segregate traffic and use these sensors and sys-
tems, without interfering with safety-critical control data. The most common of these networks
will be discussed in Section 1.1.3.

Real-Time. Automotive systems require real-time data transmissions and processing, such
that signals arrive and actions are taken guaranteed within a given time. This is to ensure that
safety-critical functions can be executed as intended, without delay. An ABS, e.g., requires
response times in the range of milliseconds to ensure that the vehicle remains steerable. These
requirements originate in the potentially high speed of the vehicle and the frequency of actions
required to fulfill a function. With increasing speed, longer response times or retransmissions
of messages translate to a longer distance traveled before an action is taken. This can have po-
tentially fatal consequences, e.g. when emergency braking is applied to stop the vehicle before
crashing into the end of a traffic jam. Other applications, e.g., those where user interaction is
required, require less rigorous response times, as the user reacts in slower time intervals. The
infotainment is one example for such applications.

Size. Last but not least, the architecture requirements are defined by the number of functions
and, corresponding to this, the number of devices. In short, the size of the architecture has a
large influence on its structure. While for low-end cars with a minimal amount of electronics, a
single Controller Area Network (CAN) bus might be sufficient, high-end cars with requirements
for bandwidth and real-time varying with the function, might require a hierarchical system,
including some high bandwidth buses. It is important to note that with multi-core processors and
generally more powerful ECUs being introduced into the automotive domain, the trend of ECU
consolidation is picking up speed. Due to the large number of ECUs, the overhead in weight,
energy consumption and cost in vehicles is not negligible anymore. With ECU consolidation,
the OEMs move away from the concept of ECU per function and start integrating multiple
functions onto one ECU. Thus, the number of ECUs is remaining stable or even reduced, while
the number of functions is increasing.

After a quick overview of the automotive domain, highlighting the bandwidth, real-time and
size requirements on architectures, the following section will discuss ECUs in more detail.

1.1.2 Computation

Due to the distributed nature of sensors, controllers and actuators and the high degree of concur-
rency, automotive networks can be considered complex, heterogeneous, and distributed com-
puters [139]. Each computation component is running on a single ECU and ECUs are dis-
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tributed spatially in the vehicle. The computational capabilities of these ECUs vary widely.
On the higher end are engine control units, infotainment systems and the central controllers for
ADASs, often containing modern multi-core processors with large amounts of main memory.
These systems are, in their computational capabilities, comparable to modern consumer elec-
tronics [121, 123]. Unix-based Operating Systems (OSs) such as QNX [136] represent the main
OSs for infotainment systems.

Devices with lower computational capabilities reach down to 8-Bit processors [122, 138].
Core clock frequencies of these devices are in the range of two-digit Megahertz or below. Mem-
ory reaches down to single-digit Kilobytes. These devices are typically used for small switching
tasks, such as recognizing or triggering simple on/off switches, triggering of motor controllers,
etc. Often, such devices are used in subsystems, which might be attached to the main networks
via bridges.

Between these two extremes, nearly all sizes and types of devices can be found in vehicles
today [142]. When dimensioning software to be used on all devices in the vehicle, such as
security mechanisms, any performance estimation must take this diverse network nature into
account. This makes it difficult to exactly quantify the computational capabilities of the overall
vehicle network.

ECU consolidation. As the number of ECUs in current vehicles is in the upper double-digit
range, OEMs have started to combine ECUs [22]. This process of reducing the number of ECUs
by combining multiple tasks on a single, more powerful ECU is called ECUs consolidation. It is
especially useful for pure controller ECUs. ECUs which need to access hardware components,
such as a switches or motors can not be integrated easily without cabling overhead. By removing
the medium size ECUs and integrating them with high powered ECUs, the distribution of ECUs
in automotive networks is changing. In the future, one can expect networks with more high-
powered and less medium size ECUs, with the number of low-power ECUs remaining in similar
numbers, possibly rising slowly in the high-end market.

Security in ECUs. Not all computation of an ECU is performed in the Central Processing
Unit (CPU). Additional computation units allow the efficient computation of specific functions.
Examples for this are, e.g., graphics accelerators (Graphics Processing Unit (GPU)) for devices
with screens and cryptographic accelerators. Especially cryptographic accelerators are impor-
tant in the context of this thesis. Larger and partially also mid-range ECUs are often equipped
with cryptographic co-processors. While hardware accelerators allow storage of cryptographic
keys and can accelerate some encryption functions [62], co-processors provide a full compu-
tation environment, mirroring the main system, including secure memory, external device con-
nections, etc. [5]. As modern microcontroller cores often integrate hardware accelerators and
co-processor functions, many ECU CPUs are available with cryptographic hardware support at
similar price points [5, 123].
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1.1.3 Current and Upcoming Networks

This section will introduce the interconnections between these ECUs. The most common com-
munication systems used in vehicles are introduced here. While this list is not exhaustive, it
covers the largest part of automotive systems in use today.

Controller Area Network (CAN). CAN is the most popular among the automotive bus sys-
tems [142]. It has been developed in the 1980s and has been standardized and extended by the
International Organization for Standardization (ISO) in ISO 11898 parts 1-3 [57, 58, 59]. With
bandwidths of between 125 kBit/s and 1 MBit/s and up to 8 Bytes per data packet, it allows the
transmission of small amounts of status and control data in the vehicle. The CAN bus extension
ISO 15765-2 defines segmentation of messages, thus allowing to transmit larger messages than
8 Bytes [66]. This is especially useful for diagnosis information. The success of CAN is in not
small part founded in its cost, which is significantly lower than for most other systems on the
market today.

CAN does not use direct addressing of receivers or identification of senders. Message
frames do not include sender or receiver addresses and senders of messages can not be easily
identified on the bus. Instead, receivers filter the traffic on the bus for accepted CAN message
identifiers (IDs). Thus, the message ID is used as an indirect address.

CAN uses an arbitration mechanism to ensure access to the bus. Arbitration is achieved
through the electrical characteristics of the bus, where a logical 0 on the bus is called dominant
and overrides a logical 1. This way, the IDs of messages transmitted at the same time will be
arbitrated automatically and the lowest message ID will pass.

While CAN is still the main prevailing system, the changing requirements towards more
electronic functions, such as advanced driver assistance functions, require an increasing amount
of bandwidth that CAN cannot cope with. Here, new communication systems are required.

Local Interconnect Network (LIN). While CAN is already on the lower end in terms of
cost, it is still undercut by Local Interconnect Network (LIN) [142]. LIN has been developed
by the LIN Consortium in the 1990s as a very inexpensive communication system for simple
switching operations or for the transmission of minimal diagnosis information. LIN is currently
a standard under development by the ISO as ISO 17987 parts 1-7 [77]. With up to 20 kBit/s, the
available bandwidth is significantly lower than CAN. A single message frame holds between
2 and 8 Bytes of data. The bus access is controlled by a single master node, requesting slave
nodes to transmit as required. Similar to CAN, identification is achieved via message IDs. LIN
is often used to connect a single or a small set of nodes in a subnetwork to a CAN device.

FlexRay. FlexRay is a mixed system of time-triggered and event-triggered communication
[142]. It is standardized as ISO 17458 parts 1-5 [69, 70, 71, 72, 73]. With a bandwidth of
10 MBit/s, it offers significantly higher transmission rates than CAN. Its time-triggered part,
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the static segment, allows transmissions to be aligned to a common time, synchronized across
the whole network. This can significantly reduce the worst-case response time and is critical
for systems that need to react fast, e.g. to guarantee the safety of vehicles. Due to the time in
the static segment being divided into timeslots, the bus access is already defined at design time.
The dynamic segment of FlexRay uses a Flexible Time Division Multiple Access (FTDMA)
approach, providing access to the bus in timeslots, which ECUs might extend as required, thus
implementing a priority scheme.

Through the timeslots in the static and dynamic segment, an implicit addressing scheme is
implemented. As all devices are time synchronized, transmitters and receivers can send and
receive in timeslots assigned at design time.

FlexRay has gained popularity quickly, due to it being able to ensure fast response times
in the network. In domains such as the drivetrain of the vehicle, where worst-case response
times are crucial for safety, FlexRay offers significant advantages. However, due to the precise
timing requirements and the complexity of FlexRay, the price per controller is relatively high,
compared to CAN. Furthermore, depending on the configuration of static and dynamic segment,
as well as the utilization of both segments, the net bandwidth can be significantly lower than
10 MBit/s.

In 2013, FlexRay has been standardized as ISO 17458-1 to -5 and is now under the admin-
istration of ISO. FlexRay will be introduced in more detail in Chapter 5, where it is extended to
carry large messages, allowing to implement the security measures proposed in this thesis.

Media Oriented Systems Transport (MOST). In the infotainment domain, the Media Ori-
ented Systems Transport (MOST) bus is sometimes used [142]. MOST is specified by the
MOST Cooperation specifies bandwidths of 25 and 150 MBit/s over optical cables and 50 and
150 MBit/s over copper cables [109]. As MOST can offer a relatively large bandwidth, it is
ideal to be used in the infotainment domain, where larger amounts of data, e.g. audio and video
streams, need to be transmitted across the network.

MOST uses a ring architecture and for safety-critical environments can be configured in a
double ring structure to achieve redundancy. Each MOST bus contains a timing master, gen-
erating frames for timing synchronization for other nodes. The bus access is also controlled
by this timing master, leaving space in the frames for asynchronous or synchronous data to be
transmitted in so called channels.

The MOST bus is a rather complex communication system, which results in high effort and
cost for design and implementation. In recent years, MOST is increasingly under pressure by
Automotive Ethernet, which offers similar bandwidth at a lower price point.

While the automotive networks in the previous section have been around for many years, the
automotive networking landscape is changing. The rise of ADASs, as well as infotainment func-
tions, which require a high amount of data, led to the development of faster networks. Cameras
are becoming more ubiquitous in vehicles and the use of their data in control systems often
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requires uncompressed images. Existing bus systems are not capable of transmitting sufficient
amount of data for high resolution cameras.

Controller Area Network with Flexible Data-Rate (CAN FD). CAN FD is an enhancement
of the traditional CAN bus and included in the 2015 version of the CAN standard [76]. It is
fully compatible with CAN and can by used on the same physical connections.

CAN FD defines a new frame format, utilizing two different clocks for different parts of
the frame. By keeping the clock for the frame headers at the same speed as for conventional
CAN, compatibility can be achieved. However, in the data segment, the clock is increased up
to 8-fold, allowing to transmit up to 64 Bytes per frame. This increases the bandwidth of CAN
FD significantly, compared to CAN.

Some additional changes have been added to invalidate CAN FD frames for CAN transceivers
on the same network, as these will otherwise not be able to accommodate and handle the in-
creased clock and amount of data. Further, to allow error correction of the larger amount of
data, new polynomials for the Cyclic Redundancy Check (CRC) have been defined.

Due to its similarities with CAN in terms of design, timing, as well as cost, CAN FD might
become the ideal replacement for the slow and aged CAN bus in many vehicle domains that do
not require multiple 10 MBit/s bandwidth and are more relaxed in terms of real-time constraints,
like the comfort domain.

In this thesis, CAN FD is used to implement an authentication and authorization framework
(see Chapter 4).

Automotive Ethernet. Ethernet is the de facto standard for wired consumer electronics [52].
Ethernet itself and derivatives of it have found their way into other domains, such as avionics
[108] and industrial automation [49]. However, in the automotive domain, the conventional
8-wire, shielded Ethernet cables required would add to much cost and weight. Furthermore,
modern Ethernet has a fundamentally different network topology, using point-to-point connec-
tions on the physical layer, instead of a bus. Ethernet has thus until recently only been used
in very limited applications, such as an additional diagnosis connector, besides the mandatory
On-Board Diagnosis (OBD)-II port [65].

This changed with the development of the BroadR-Reach PHY by Broadcom, announced
in late 2011 and picked up for licensing by the One-Pair Ether-Net (OPEN) Alliance [127].
Further standardization of the technology in the Institute of Electrical and Electronics Engineers
(IEEE) working groups for Ethernet (802.3) is in progress [54, 55]. In the following, the terms
Automotive Ethernet and BroadR-Reach, referring to these technologies and standards will be
used synonymously.

The BroadR-Reach technology allows to operate a conventional duplex 100 MBit/s con-
nection over two wires, without the need for additional shielding. This technology is in use in
vehicles on the road today, mostly to handle larger amounts of sensor data from sensors such
as radar, Lidar and cameras. Due to the rising resolution of these sensors, car manufacturers
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are looking towards 1 GBit/s Ethernet connections, which could be employed for such sensor
networks or to satisfy the increasing backbone traffic requirements [54].

BroadR-Reach targets the physical layer, reducing the weight and cost requirements of the
communication medium. The Medium Access Control (MAC) and higher layers are not defined
in these standards. When using Ethernet for safety-critical systems with real-time requirements
however, the conventional approach for collision resolving on Ethernet is not ideal. In conven-
tional Ethernet, when a collision occurs, the bus is blocked by participants for a short while,
overriding the collided messages with a predefined pattern. Then, random back-off timers are
started on both colliding senders, after which transmissions are started again. With these ad-
ditional delays for collided messages and random back-offs, it is impossible to calculate rea-
sonable worst-case response times. Furthermore, as all message on Ethernet have equal pri-
ority, priorities as they exist in vehicle networks today could not be implemented. Multiple
approaches have been and are under development to tackle these issues, among them Audio
Video Bridging (AVB) and Time-Sensitive Networking (TSN), shortly explained in the follow-
ing.

Audio/Video Bridging (AVB). AVB (IEEE 802.1BA) has been developed for the entertain-
ment domain, allowing synchronized recording and playback of audio and video without the
need for dedicated cables per stream [51]. Furthermore, AVB offers the possibility to give pri-
ority to certain messages, via the Quality of Service (QoS) tag in the Ethernet frame, as defined
in IEEE 802.1Q [53]. This standard has quickly gotten the attention of the automotive industry,
as well as other industries, requiring time-synchronized real-time streams. However, the re-
quirements of the automotive industry are stricter than the guarantees given by AVB. This lead
to the development of TSN.

Time Sensitive Networking (TSN). TSN is the follow-up standard to AVB and developed by
the same IEEE task group [56]. The standard is currently still under development. In compari-
son to AVB, TSN does set significantly stricter requirements for response times. Among others,
TSN is expected to allow preemption of messages by higher priority messages, thus reducing
response times. It is furthermore expected that TSN will allow dynamic reservation of streams
at runtime.

1.2 Security

This section focuses on security aspects auf automotive architectures. Security in digital com-
munications is not a new topic. In consumer networks and on the Internet, security has long
been playing an important role and many standards have been developed, used and improved
upon. The basic principles of these security mechanisms will be detailed in the following.
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Figure 1.2: The security principles of Confidentiality, Integrity and Availability in the context of mes-
sages on a communication system. In case of an attack on Confidentiality an attacker might be able to
read a message (a). In case of an attack on Integrity an attacker can alter a message (b) and in case of
an attack on Availability, an attacker is able remove a message from the communication medium (c).

1.2.1 Principles

The most basic concepts of security are commonly referred to as the CIA principles: Confiden-
tiality (C), Integrity (I) and Availability (A) (see Figure 1.2). Some researchers also consider
liability and anonymity, but these are not required in the automotive domain and thus will not
be discussed here.

Confidentiality. Confidentiality describes the protection against reading of messages by an
attacker (see Figure 1.2(a)). Reading is generally possible whenever the communication medium
is accessible to an attacker and messages are insufficiently or not at all encrypted. Thus, to en-
sure confidentiality, a sufficiently strong encryption method is required.

Integrity. Integrity describes the protection against creating or modifying messages by an
attacker (see Figure 1.2(b)). To protect the integrity of the message a Cipher-based Message
Authentication Code (CMAC) is typically used. A CMAC is a Message Authentication Code
(MAC) calculated based on the message itself and an encryption key. To avoid equal CMACs
for equal messages, usually a random element is introduced, typically a unique random number
(nonce). It is important to note that encryption does not guarantee integrity, as the message
could be altered by an attacker, without the recipients being able to detect the change. In many
communication systems, the attacker must not necessarily be able to read the message to be
able to tamper with it.

Availability. Availability describes the concept of an attacker not being able to remove mes-
sages from the communication system (see Figure 1.2(c)). This includes removal for all re-
cipients (removal), as well as removal in a way such that the attacker himself can receive the
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message while intended recipients do not receive it (interrupt). Availability can not necessarily
be ensured by additional measures taken on higher layers in the communication, but needs to be
ensured by the communication system itself. Availability of a CAN message, e.g., can not be
guaranteed, as any participant on the bus can alter the signal by sending a dominant bit at any
time. If this alteration is performed while the message ID is transmitted and repeated for every
retransmission of the message, the message is effectively removed from the bus.

1.2.2 Processes

To be able to guarantee the principles in the previous section, different processes are required.
These will be explained in the following.

Encryption/Decryption. Among the processes required for secure communication, the pro-
cess of encrypting and decrypting messages is the most well-known. Encryption translates a
plain text message into a cipher text message by means of a key. Depending on the type of
encryption, this key might be secret (symmetric-key encryption) or publicly known (public-key
encryption) (see Section 1.2.3). Decryption reverses the process and translates a cipher message
into plain text, again by the use of a key. The decryption key is always secret.

Signing/Verifying. When signing a message, a signature is added to the end of the message.
The signature ensures that the sender of the message can be verified by the receivers and that the
integrity property is fulfilled. To do so, the signature is typically based on the message itself, a
unique random number (nonce) and the private key of the sender. To achieve the desired proper-
ties, public-key cryptography is used. As CMACs, based on symmetric-key cryptography, offer
integrity, they are often considered signatures. However, they do not offer non-repudiation,
meaning that the receivers can not verify who of the key holders sent a message. This is due to
the fact that the same key is used for encryption and decryption and shared among all partici-
pants.

Authentication. Authentication describes the process of securely identifying and validating
a communication partner. Typically the authentication process is performed before any other
communication processes are started. It is further used to exchange keys which are used in
the following communication. This is typically achieved with public-key cryptography or a
pre-programmed master key with symmetric-key cryptography (see Section 1.2.4).

Authorization. Authorization is used to grant access to a resource. This is typically per-
formed after communication participants are authenticated. Typically, a central control unit
grants or revokes access to resources, configured through an Access Control List (ACL). Re-
sources requested for authorization are, e.g., messages transmitted via the communication sys-
tem, or overall access to the communication system.
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1.2.3 Types of Cryptography

Cryptographic algorithms are usually distinguished in symmetric-key algorithms and public-
key algorithms. These two types are explained in the following and depicted in Figure 1.3.

Symmetric-key Cryptography. In symmetric-key cryptography, a secret key is shared among
the participants (see Figure 1.3(b)). Each of the participants can encrypt or decrypt messages
with this key. To uphold the confidentiality of the communication, the key must be kept secret.
It must thus be exchanged over a previously established secure channel between all participants.
Symmetric-key cryptography can be implemented with relatively small resource requirements
in software and, due to the typical repetitiveness of the algorithms, also be implemented more
easily in hardware. Examples for symmetric-key algorithms are Advanced Encryption Standard
(AES) [64, 120], Data Encryption Standard (DES) [117] and 3DES [64].

Public-key Cryptography. In public-key cryptography, two unique keys are required for ev-
ery communication participant (see Figure 1.3(b)). One of these keys, the private key, is to be
kept secret while the other, the public key, is publicly available to communication participants.
The keys are mathematically dependent in a fashion that an encryption or decryption operation
performed with one key, can only be reversed with the other key. Thus, a message encrypted
with the public key can only be decrypted with the private key. This allows to send messages
to the owner of the public key which can only be decrypted with his private key. Furthermore,
public-key cryptography allows to sign messages with a private key and verify these with the
public key. As the private key is secret, a corresponding message signature could have only been
created by the holder of the key. Public-key algorithms are computationally intensive and limit
the length of the clear text input. Thus, these algorithms are typically used to exchange sym-
metric keys, which are in turn used for communication. Examples for public-key cryptography
algorithms are RSA [143] and Elliptic Curve Cryptography (ECC) [159].

1.2.4 Algorithms

After understanding the basics of cryptography and security, in this section, an overview over
existing algorithms implementing and ensuring these concepts will be given. In the following,
a quick overview over the advantages and disadvantages of algorithms is given. A countless
number of algorithms have been developed throughout history. A full listing of algorithms is
too extensive to be covered in this thesis. Thus, a short overview over the most widely used
algorithms shall be given.

Data Protection Standard (DES). DES is a symmetric-key algorithm developed for the in-
telligence agencies in the United States of America (USA) in the 1970s [117]. It is now widely
available in cryptographic software libraries and hardware implementations of cryptographic
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Figure 1.3: Comparison of symmetric-key and public-key cryptography. In symmetri ckey cryptography,
the keys for encryption and decryption are identical (key1), in public-key cryptography two different keys
(key2, key3) are used. This additionally allows signing and verification.

accelerators. DES uses a key of length 56 Bits. This key size leads to insecurities, as with
modern computer systems, a key can be determined by a brute force analysis (i.e. the testing of
every possible key).

Triple DES (3DES). Triple DES has been developed to reuse the components of DES in 1998
[64]. It is based on DES, and in its main mode of operation is chaining three runs of the DES
algorithm, each with a separate key of 56 Bits, thus increasing the key size to 168 Bits. It is
currently considered secure. As DES has been designed for hardware support, software imple-
mentations of DES and Triple DES (3DES) are typically slower than comparable algorithms.

Advanced Encryption Standard (AES). The Advanced Encryption Standard (AES) is the
National Institute of Standards and Technology (NIST) standard resulting from a cipher algo-
rithm competition held by NIST and was announced in 2001 [64, 120]. It is a symmetric-key
algorithm and the official successor to DES. AES can be used with keys of sizes 128 Bits,
192 Bits and 256 Bits. While attacks other than brute force have been shown, none of these
attacks can be performed in reasonable time, with current computers the algorithm is thus con-
sidered secure. Today, AES is very commonly used, available in many software libraries, and
as dedicated and integrated hardware accelerator.

RSA. RSA is a public-key algorithm widely used in many areas worldwide. It has first been
presented in 1977 [143]. It exploits the difficulty of factorization of large numbers into two
primes to achieve a secure relationship between public and private key. RSA is typically used
with keys between 2048 and 4096 Bits. Keys of sizes lower than 1024 Bits can not be regarded
as secure. While keys of 1024 Bits have not yet been broken in a practical use case, their use is
discouraged [12]. RSA has a high computational complexity, resulting in long encryption and
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decryption times (see Chapter 4). Hardware accelerators are available, but integration of these
with microcontrollers is less widespread than for AES.

Elliptic Curve Cryptography (ECC). ECC is a public-key algorithm that employs the diffi-
culty of reversing a point multiplication of two points on an elliptic curve [159]. By not being
able to reverse the multiplication, the asymmetry required for a public-key algorithm can be
established. ECC is considered significantly more secure than RSA for equal key lengths. By
being able to reduce the key length, the algorithm has the potential to execute significantly
faster, as less operations are required. ECC is typically used with keys of size 256 Bits. While
the concept of ECC has been proposed in 1985, the number of dedicated or integrated hardware
accelerators is highly limited. There are, however, few software libraries available that support
a subset of functions that fall under ECC, such as signing and verification.

1.2.5 Evaluating Security

With the large number of security algorithms and protocols, the question of comparability of
these protocols is imminent. Evaluating security of algorithms and protocols for comparability
is not trivial. In the following, a short overview over the evaluating of algorithms and security
is given.

Symmetric Algorithms

Security algorithms are characterized by a number of factors and the internal structure is signif-
icantly different. This holds especially when comparing symmetric and public-key algorithms.
The common denominator to all these algorithms is that a secret parameter, the cryptographic
key is required. However, even the structure and functionality of keys can be significantly dif-
ferent. Thus, algorithms are typically only compared to algorithms of the same type (e.g. for
symmetric vs public-key). For symmetric algorithms, the key lengths is one indicator for the
strength of the algorithm. Furthermore, as in symmetric algorithms, the as the input is typically
processed in blocks, the block length is a factor that can be compared. In the following, a short
discussion on comparability based on the parameters key length and block size is given.

Key Length. The general assumption when comparing (established) cryptographic algorithms
is that the algorithm in itself is secure. The security of the encrypted messages thus depends
on the given parameters, these can be the key (and its length), as well as the clear text to be
encrypted. The focus of security comparisons is thus on the key, and specifically its length. In
case of the DES algorithm for example, the key length of 56 Bit is the weakest point in the
system, allowing brute force attacks on encrypted messages. While a 56 Bit key length was
still sufficient when the algorithm was developed, computers nowadays can process the amount
of data much faster and thus find the key simply via trial and error of all combinations (brute
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force). To mitigate this attack and reuse the developed algorithm, 3DES was developed, using
DES in three stages with three different keys, thus adding up security. While this is simplified
and 3DES does not actually triple security, an increase in security is achieved. The discussion
on key lengths also clearly shows the changing nature of security. As computational power is
rising, following Moore’s Law, larger keys or new algorithms are required to stay secure. In
this fashion, DES was once considered secure, while today’s computers can quickly brute force
the relatively short key.

Block Size. Another issue when comparing algorithms is underlying block size and the han-
dling of blocks. Blocks are the input on which algorithms operate. Longer clear text input needs
to be cut to block size, shorter input needs to be padded. It is important to note that the block
size determines the number of unique cipher blocks. Repetitions of blocks should be avoided,
as they could enable an attacker to reverse engineer the key. The block size thus determines the
maximum amount of data that can securely be encrypted. 3DES uses a block size of 64 Bits,
limiting the amount of securely encryptable data with identical key to about 32 GB. AES, in
turn uses 128 Bits, raising the amount of securely encryptable data by 232.

When encrypting data with such block based ciphers, it is important to note that when simply
dividing clear text into blocks, identical clear text results in identical cipher text. This operating
mode is called Electronic Code Block (ECB) and highly discouraged, as it can make patterns
in the input easily identifiable. To avoid this, blocks should be combined or random factors be
added. Other modes, such Cipher Block Chaining (CBC) or Cipher Feedback (CFB) perform
such concatenation, and require a secure Initialization Vector (IV) as additional input. For these
reasons, in this work, only AES in the CBC mode is used.

Asymmetric Algorithms

When comparing asymmetric algorithms, the internal workings of the algorithms lead to effects
that key sizes alone can not be reasonable compared. For example, the RSA algorithm uses
the difficulty of factorization of large numbers as the basis of security. ECC, in turn, uses
the Elliptic Curve Discrete Logarithm Problem (ECDLP) as a basis. As these mathematical
problems are fundamentally different, the comparison of parameters, such as key length, fails.
ECC is considered more secure than RSA with identical key length. However, it is to note that
this higher security strongly depends on the curve chosen for ECC, as the ECDLP can be solved
efficiently for some curves [13, 160].

Protocols

In the security domain, protocols can be used to fulfill different tasks. Among these tasks are
the exchange of keys, authentication and authorization. Similar to algorithms, the comparison
of security of protocols is not trivial. While it is possible to show that a protocol can enforce
the criteria envisioned, its security is based on the algorithms at the core of the protocol, thus
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referring back to the challenges above. Besides that, protocol concepts, just like algorithms, can
be checked for flaws. Tools such as Scyther [18], allow to automate this analysis. An example
for such an analysis is shown in Section 4.5.

Implementation

Although comparisons of algorithm and protocols are not trivial, it is possible to evaluate if they
generally provide the level of security required for a project and chose an appropriate candidate.
Yet, every week security problems are in the news all over the world. This is due to the fact
that concepts might be secure, but their implementation might not be. While AES with the right
key length is an excellent encryption algorithm, a library implementing AES could include a
backdoor, sending the key to the developer of the library. In this case, although AES is secure,
the library itself is not. Besides problems in configuration, this is the most common reason for
security breaches on the Internet.

1.3 Automotive Security

Automotive communication systems and architectures have not been designed with security in
mind. Traditionally, vehicles were separate entities without interconnections to other vehicles
or networks. The communication systems in those vehicles have been designed for functionality
and safety. Security was ensured by limiting access to the systems in the same fashion as access
to the vehicle itself, through locked doors.

In recent years, the interconnectivity of devices, driven by the Internet of Things (IoT), has
also reached the automotive domain [142]. Many vehicles are now connected to the Internet via
cellular networks. Also networks between vehicles (car-to-car) and other devices (car-to-X) are
proliferating at increasing speeds. Modern vehicles offer the integration of smartphones, either
via WiFi or Bluetooth, enabling a further exchange of data. Today’s vehicles can no longer be
treated as isolated units in terms of network security, but need to be evaluated and designed as
connected devices.

The OEMs, suppliers and also academia are reacting to these security challenges, but much
effort is needed to secure vehicles appropriately. This is also due to the fact that the vehicle life
cycle is relatively long for a device containing consumer electronic. The development time for a
new vehicle generation is typically at least 3 years, while the lifetime of the vehicle on the road
is upwards of 10 years [147]. Designing security measures to avoid attacks with the capabilities
a future attacker will have over such a long time frame, is difficult.

1.3.1 External Security

Currently, the state of implementation of security in automotive systems is limited. While
modern high-end vehicles often protect parts of their networks, these protection mechanisms
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are mostly at the perimeter of the vehicle networks, often manifesting as firewalls at gateways.
With the increasing number of external connections, the attack surface rises. A number of attack
vectors and the distance from which these can be exploited are shown in Figure 1.4.

To detect attacks, commercial Intrusion Detection Systems (IDSs) are available from sup-
pliers [4, 170]. Connections to the Internet and cloud services are often (not always) protected
with state-of-the-art security mechanisms at time of production. However, the support and up-
grades of these systems, which is essential to keep protection mechanisms up-to-date, remains
an open and fragmented issue. While some manufacturers include OTA update options, others
require visits to an authorized workshop. Some manufacturers do not offer any updates.

Upcoming standards for vehicle-to-vehicle communications are expected to include authen-
tication, authorization and encryption schemes, protecting the transmitted information. How-
ever, it is to note that the received information has a direct influence on the driving behavior of
the vehicle and is thus highly sensitive. An attacker might, e.g., be able to influence following
vehicles and force those to brake by altering the messages in his own vehicle, before those are
transmitted via a secure connection. Sanity of vehicle-to-vehicle data will become increasingly
important with the rising distribution and mandatory introduction of such systems. The manda-
tory introduction is expected in the USA from the year 2020 onwards [157]. The analysis of
such security threats through external connections and the protection against are outside the
scope of this thesis.

1.3.2 Internal Security

The protection mechanisms of in-vehicle networks are limited. While in the literature a mul-
titude of mechanisms are proposed, so far the implementation of these systems in vehicles is
minimal. A detailed overview over existing methods from both academia and industry is given
in Section 1.6. While few exceptions exist, it is typically correct to say that no encryption is
used for message transmissions on the internal networks for vehicles on the road today. Some
manufacturers employ central gateways between different buses, allowing filtering of messages,
which is often implemented in rudimentary rule-based systems. However, many manufactur-
ers bridge buses directly, without further filters and some bypass their gateways with multi-bus
ECUs, leading to security concerns. Judging the security of networks in general is not trivial
and no general statement can be made. This thesis seeks to improve this (see Chapter 3).

The properties of the predominant vehicle communication system CAN make implementa-
tion of security difficult (see Section 1.1.3). The limited data rate, limited amount of data per
message and the lack of secure sender and receiver identification make CAN a difficult basis
for security. As a short message size allows only a very limited amount of different messages,
an attacker can more easily reverse the encryption, making a meaningful encryption impossi-
ble. The low data rate of CAN makes transmissions of large messages, e.g., for certificates in
authentication processes, impossible. While the data rate is higher in other systems such as
FlexRay, the rigid structure and limited amount of bytes per message remain a challenge.
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However, the increasing data rate requirements in vehicles today, having to support cam-
era and radar sensors, among others, are triggering a redesign of the networks in all major
vehicle manufacturers. The networks in next generation upper class vehicles will likely be
based on Ethernet, providing a sufficient bandwidth and more reliable, though not inherently
secure, identification of communication partners. As Ethernet also requires point-to-point con-
nections, a fundamentally different topology compared to the CAN bus structure, a redesign
of the complete network architecture is required. This major redesign is a chance for the ve-
hicle manufacturers to incorporate security considerations and best practices into the network
architecture.

1.3.3 Device Security

Another aspect of security in vehicles is the security of the ECUs, gateways and other devices.
Here, one can differentiate between software and hardware security. Increasingly, ECUs are
equipped with cryptographic accelerators and secure memory, allowing higher standards of
security. This includes password protected and sometimes signed ECU updates and, in some
cases, strategies for secure boot. However, these protection mechanisms are often insufficient
and have been circumvented. The tuning community makes use of such exploits in a large scale,
with e.g., through chip-tuning.

The aspects of device security are not only of significant importance for the customer, but
also for the manufacturer. Chip-tuning and product piracy are important factors, potentially
leading to financial losses for the manufacturer. Chip-tuning may additionally raise questions
of liability. If an unauthorized software is installed on an ECU, the manufacturer does not have
to assume liability for malfunctions. However, proving the installation of such software is not
trivial. Thus, manufacturers are working on improved protection mechanisms for software and
hardware of devices. Here, Physically Unclonable Functions (PUFs) are becoming increasingly
important [162].

1.3.4 Standardization

Standards addressing security exist in different domains. Starting from a high-level organiza-
tional perspective, ISO/IEC 27001 [74] and ISO/IEC 27002 [75] outline requirements for Infor-
mation Security Management Systems (ISMSs) in organizations and for individuals handling
these, respectively. To evaluate and certify the security of systems, typically the “Common Cri-
teria” are used. These are specified in ISO/IEC 15408 parts 1-3 [63, 60, 61]. More specifically
the embedded and real-time systems domain is addressed in the ISA/IEC 62443 series of stan-
dards. Starting from part 1-1 [47] to part 3-3 [48], it provides guidance for security through the
complete life cycle and all components in Industrial Automation and Control Systems (IACS).

While the above standards can in part be applied to the automotive domain, the underlying
concepts are also integrated into automotive standards. Not directly relating to security but a
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core standard of safety and thus heavily influenced by security issues is ISO 26262, parts 1-10
([67] to [68]). First security considerations for the automotive domain have been laid out in
SAE J3061 [144]. There, existing approaches from other domains have been applied as guide-
lines and best practices to the automotive industry. Furthermore, AUTOSAR specifies to use
security for message transmissions in its version 4.2.2. There, high-level abstractions for the
Secure Onboard Communication (SecOC) module, such as the use of Message Authentication
Codes (MACs) for authentication of senders and messages are proposed [7, 9]. AUTOSAR
uses symmetric keys. An Application Programming Interface (API) for cryptographic opera-
tions, such as encryption and decryption, but also key exchange, is defined in the specification
of the Crypto Abstraction Library (CAL) [8]. It is important to note that these definitions are
an abstract API and no algorithms or protocols for implementation are defined here. Thus any
developed framework can be integrated with the AUTOSAR specification by fulfilling the API
requirements. Furthermore, [9] clearly states “The SecOC module has not been specified to
work with MOST and LIN communication networks. With MOST not being specifically sup-
ported, the applicability to multimedia and telematic car domains may be limited.”. Considering
the high risk of attacks through telematics and the infotainment domain, this is a significant gap.

1.3.5 Legal Situation

Of high importance in the domain of automotive security is the legal framework. A complete
survey of the worldwide legal situation exceeds this thesis, but a short overview shall be given.
While legislation exists for the safety of vehicles, as well as their operation and service, security
is not yet addressed by existing laws. In many countries, bills concerning vehicle security have
been proposed and are under discussion in local parliaments at time of writing (e.g., [33, 100]).
These bills can be divided into the categories security and privacy.

On the one hand, these bills seek to secure the vehicles, their external and internal con-
nections, as described in Sections 1.3.1 and 1.3.2, respectively. On the other hand, the highly
digitized vehicles of today generate large amounts of data, ranging from navigational infor-
mation over speed, acceleration and braking information to speech recorded via the internal
microphones, e.g., for voice calls. The current legal situation is unclear about the ownership of
this data. Vehicle owners can not access or delete this data, also in case their vehicle is sold. In
many cases, such data is transmitted to the manufacturer for analysis [101]. Currently, no law
governs the treatment and ownership of such data, resulting in privacy concerns.

Though not directly addressing security, some legacy legislation with impact on security
exists. One example of such legislation interfering with current security concerns is the require-
ment of the OBD port. The requirements for this diagnostics port are following the principles
in competition law, requiring a possibility also for manufacturer independent workshop to diag-
nose and service the vehicle. Its requirements are laid out in the laws of a number of countries
(e.g., [29, 31]) and includes the specification of a communication protocol which does not offer
encryption or authorization. With such requirements by law, securing all in-vehicle traffic is
difficult. A weak link will remain in the form of the diagnostics port.
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Figure 1.4: Attack paths into the vehicle and distance required for attack. Direct access is needed
for media, such as USB smartphone connectors and CDs, and the On-Board Diagnostics (OBD) port.
Wireless access can be possible via short range systems, such as the Tire Pressure Monitor System
(TPMS) or long distance, such as by overriding the Global Positioning System (GPS) signal. Apps
installed on the infotainment system are a special case, as these are distributed over the Internet, but
installed locally.

This section shall only serve as a short introduction into the complicated legal situation
around security in cars. The remainder of this thesis focuses on technical approaches to auto-
motive security.

1.3.6 Attack Examples

In the following, a few examples of automotive security and attacks on the same shall be dis-
cussed. These descriptions will focus on digital attacks, resulting from the increased intercon-
nectivity and digitization of cars and will not further discuss conventional lock picking mecha-
nisms. The examples mentioned here can be broadly divided into three categories. In the first
category, all attacks resulting in the opening of the vehicle doors are summarized. The second
category describes attacks on the internal vehicle networks, where an attacker has local access
to the vehicle (local attacks). Finally, the third category summarizes all attacks on the internal
vehicle networks, where an attacker does not require local access (remote attacks).

Accessing of the vehicle. The first category is an essential basis for many attacks in the local
access category. The access to the internal vehicle networks is significantly easier when access
to the vehicle is obtained. In that case, the diagnostics port can be used for further network
access. Multiple different attacks demonstrated in laboratory situations and observed by the
police in the wild fall into this category. The obvious attacks are standard lock picking or
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the smashing of windows. Protection against these mechanical attacks are outside the scope
of this thesis and will not be further discussed here. Picking of the digital locks, i.e. the
remote lock opening/closing function also falls in this category. Here, different attacks have
been demonstrated. These range from simple brute-force code guessing devices, emulating
the remote control of the driver over the sophisticated reverse engineering of vehicle remote
security chips [175] to attacks on connections to smartphone vehicle apps [80, 1] and “Keyless
Entry” systems [36]. Once having gained access to the car, an attacker might steal any of the
contents of the vehicle or use the OBD port to access the internal vehicle networks for further
damage. Note that it is in most cases not directly possible to drive the car, as the immobilizer is
typically still blocking the starting of the motor.

Local attacks. With access to the inside of the vehicle and specifically the diagnosis port, an
attacker can proceed with attacks from the second category. Here, all attacks are summarized
which are directly executed over a wired connection to the vehicle. Typically, such a connection
is established via a CAN or OBD to Universal Serial Bus (USB) adapter. Such adapters allow
to receive and transmit messages from and to the internal networks, which, in case not further
shielded by a gateway, are fully accessible to an attacker. With a successful connection to the
internal network, an attacker generally has the same possibilities as the owner and authorized
workshop personal. However, vehicles differ significantly and large amounts of reconnaissance
work might be necessary to execute all functions. Furthermore, messages might be filtered by a
central gateway and the attacker might not be able to send any message freely to any recipient.
Bypassing the gateway manually and connecting to the target bus circumvents this protection
mechanism. The attacker can potentially also read and reprogram the software on ECUs in
the network. However, some vehicle elements, such as central ECUs, e.g., the engine control
unit or the immobilizer might further be protected against reprogramming, e.g. by passwords.
Attacks in this category have been presented in the literature. Typically, these attacks have
been performed under laboratory conditions [85, 15, 105]. Additionally, a large number of
services exist worldwide, using exploits in this category to alter the mileage counter of vehicles,
reprogram keys and bypass immobilizers, e.g., to add a “Start Engine” button. Many of these
services are illegal, yet devices to perform such access are easily available online [28, 156].

Remote attacks. Another access mode entirely is the third category of remote access. Here,
the attacker tries to access the vehicle via remote connections, such as a cellular Internet con-
nection. This includes the challenge of first identifying the vehicle on the Internet, before
executing the attack first on the gateway device and in the following on the internal networks
of the vehicle. The feasibility of such attacks has been presented under laboratory conditions
in [15] and [107]. A significant amount of reconnaissance about the vehicle to be attacked is
required here. However, with increased standardization of the vehicle Internet gateways, such
as the infotainment system with apps in Google’s Android Auto [37] and Apple’s CarPlay [3],
the hurdles for this access method will decrease. Similar to malicious apps on smartphones, an
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attacker might deceive the user to install a malicious app for his vehicle, bypassing the gateway
protection mechanisms entirely.

Another aspect of remote attacks is the misuse of protective systems. In 2010, reports
described the misuse of a system in Austin, Texas, USA meant to track and disable vehicles of
clients not paying installments for their vehicle loans [134]. In this case, a laid off employee
disabled the engines of more than 100 vehicles, while at the same time activating their horns.
The employee used a former colleagues account to access the web-based system. While from a
technical perspective this was a legitimate action that is hard to prevent, clearly such situations
pose high inconvenience to the vehicle user and should not happen. This illustrates the influence
of societal aspects on vehicle security.

An additional threat might result from actions of the owner of the vehicle. While the owner
himself is typically considered trustworthy, he does have access to the OBD port. In recent
years, multiple OBD dongles have appeared in the market, promising diagnosis and tuning
functions via this port. Furthermore, some vehicle insurance providers offer discounts for good
driving behavior. Typically, this is achieved by tracking the speed, mileage and location via an
OBD adapter [104, 135]. Some of these adapters are equipped with Bluetooth connections to
connect to the owners smartphone [6], others have built-in cellular modems, effectively bridg-
ing the internal vehicles networks to the Internet [185]. In case these devices are not secure,
attackers can take over these devices and execute any function, as if directly connected to the
OBD port. Such attacks have been presented in the literature [34, 125, 166]. While the owner
is not the attacker in this scenario, he certainly is a threat.

Disclosure policies. In software companies it is common practice to operate vulnerability
disclosure programs and even to offer bounties for vulnerabilities reported. These programs
are used to attract freelance security researchers to spend time with the products of a company
and test them for security. In turn for the bounty, the security researcher hands over all data
collected about a vulnerability before releasing it in public, which allows the company to fix it
before any damage to its customers. This process is not yet common practice in the automotive
domain. First companies are experimenting with such programs [14, 40], but their introduction
is not yet widespread. This makes it difficult for security researchers and the public to get into
contact with a manufacturer, in case a security flaw is found in its cars.

1.3.7 Summary

This short overview over the state of automotive security reveals a large number of challenges
across all sectors. Starting from the in-vehicle communications, over external connections and
vehicle locks all the way to legal frameworks. These challenges are not all of technical, but also
societal nature, requiring new approaches. In this thesis, some of the technical approaches shall
be addressed. Challenges for these are outlined in the following section.
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1.4 Challenges

After the basic understanding of automotive communication systems, as well as security sys-
tems, as they are implemented in consumer networks today, this section will focus on the chal-
lenges existing when combining these two domains. Multiple challenges need to be overcome.
The complexity and heterogeneity of automotive networks create challenges at design time, as
well as runtime. In the following, some of the technical challenges will be explored.

1.4.1 Design Time

Managing the complexity of security in automotive networks through all phases of the life cycle
is critical. This includes the design time at the start of the life cycle.

Analysis. It is important to understand and evaluate the security of the complete architecture,
as this enables comparisons of different architectures and is the basis for informed decisions on
security. It is possible to analyze single devices and their hardware and software components for
security, e.g., through evaluation frameworks and expert audits. However, the size and complex-
ity of complete automotive architectures complicates the analysis. While other networks, such
as the Internet, are larger and more complex, these are typically not analyzed as a whole. Due
to the prevalent architectures in the automotive domain, however, there are no gateways fully
separating the network. Thus, the architecture as a whole needs to be analyzed to characterize
all influences.

Another factor to be considered at design time is the lifetime of the vehicle. As vehicles are
typically on the road for ten years and longer, the security decisions made at design time have
to hold up throughout the years the car is on the road [147]. The computational capabilities
of attackers, however, develop significantly within this time. Furthermore, security flaws and
attack possibilities might be discovered while the car is on the road. This development over
time needs to be taken into account while designing the in-vehicle architecture. While some
of these new flaws might be fixed through software patches by the manufacturer, flaws in the
hardware design can not be rectified easily. For issues, such as changing the bus an ECU is
connected to, an expensive recall would be required. Furthermore, one can assume that, similar
to the consumer electronics domain, software patches will not be supplied indefinitely.

Currently, no evaluation frameworks for the security of in-vehicle networks exists. No stan-
dards have been established and no best practices have been formulated.

Synthesis. Adjacent domains, such as the safety of vehicles, already heavily rely on model-
ing and verification techniques to analyze and verify the safety of vehicle designs. Furthermore,
these verification approaches have been extended to synthesis, allowing to synthesize new safe
systems from a set of requirements and models of the subsystems. Similarly, security analysis
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can form the basis of a model-based security synthesis. This synthesis can generate architec-
tures or subsystems based on the security requirements defined for functions, subsystems and
the overall architecture. An exhaustive search can be performed with the above analysis as
feedback. This way, the most secure architecture or subsystem for a given set of requirements
can be synthesized based on the values determined by the analysis.

To accommodate all safety and security requirements in the synthesis process, future sys-
tems will likely need to take an integrated approach. In this approach, safety and security need to
be considered, based on their respective modeling and verification approaches and a combined
synthesis is required. Only such an integrated model-based safety and security synthesis can en-
sure that complex future architectures are safe and secure. As currently no analysis frameworks
exist and these form the basis for model-based synthesis, no synthesis approach exists.

1.4.2 Runtime

While design time analysis helps determining the fixed structure of the architecture, it is re-
quired to ensure security at runtime as well. This includes the security of messages and ECU
software, as well as ensuring that only legitimate communication participants transmit legiti-
mate messages, and that all participants can be identified. Ensuring these security criteria is
challenging in automotive networks and causes a lot of challenges. These can be broadly sum-
marized into the categories Latency, Bandwidth and Computation and Storage. In the following,
these challenges are shortly described.

Latency. As automotive communication systems implement distributed control systems re-
quired for the safety of the vehicle, these systems follow the real-time requirements laid out
in Section 1.1.1. Automotive communication systems need to respond within a range of 1 to
10 milliseconds, for some systems in the range of microseconds. Retransmissions of messages
are generally not possible. On the other hand, fulfilling security requirements usually requires
a certain amount of time in itself, depending on the chosen algorithm and protocol. Using a
software implementation on an embedded processor with limited computational capability can
drive the required time for encryption and decryption into the area of 1 to 30 seconds or even
higher. This holds especially for asymmetric cryptography, such as required in authentication
and key exchange protocols. Implementing such protocols in the automotive domain is chal-
lenging and consequently most existing protocols use a pre-shared key leading to a decrease of
security.

These requirements seem to be contradicting. In this thesis, we will show that this con-
tradiction can be resolved by optimizing the authentication protocol for the use in automotive
contexts. By using domain knowledge, such as the detailed construction and operation of com-
munication systems and security protocols in vehicles, latencies can be reduced significantly.
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Bandwidth. Similar to the latency requirements, the bandwidth requirements of security pro-
tocols versus the bandwidth capabilities of automotive communication systems are highly diver-
gent. While upcoming automotive communication systems on the upper end of the bandwidth
range support similar speeds to consumer networks (10 to 100 MBit/s), widespread legacy com-
munication systems and other networks designed for time-critical control data do not provide
sufficient bandwidth (125 kBit/s to 1 MBit/s) to shoulder the additional requirements of security
protocols. The protocols used in corporate networks and the Internet are used with connection
speeds that are typically in the range of 1 MBit/s to 1 GBit/s. This is also visible in the amount
of data per packet, which is often the largest unit that can be transmitted on the bus, as segmen-
tation is typically not specified in the automotive domain. The amount of data per packet in
vehicles is too short to implement a meaningful encryption, which cannot easily be broken by
brute force attacks, let alone an authentication protocol. Typical message content lengths are in
the range of 8 to 40 Bytes. By contrast, Ethernet offers packet sizes of up to 1500 Bytes.

Again, the requirements of security and the automotive domain seem contradictory. How-
ever, by extending the existing standards, this thesis will demonstrate that secure messaging is
possible, also on low bandwidth networks.

Computation and Storage. The ECUs used in automotive settings are of varying compu-
tational power and storage. While some devices, such as the engine control unit or the in-
fotainment unit have a rather large amount of computational power and storage, most ECUs
are much smaller, having slower processors and little memory. Current infotainment units are
typically using single- or multi-core CPUs with frequencies in the range of hundreds of Mega-
hertz or even Gigahertz and multiple Gigabytes of Random Access Memory (RAM), as well as
dedicated GPUs, similar to the processors in modern smartphones and tablets [123, 137, 121].
Compared to that, slower ECUs, such as for user input switches are 8-Bit processors with fre-
quencies in the range of 20-40 Mhz and typically below 8 kB of RAM [122, 138]. However,
security mechanisms as those shown above require complex computations, especially in case of
asymmetric cryptography. This further challenges the implementation of effective security in
the automotive domain.

As shown in this thesis, security can be achieved by selecting the parameters of the security
algorithms and protocols carefully and by optimizing protocols for the use in environments of
low computational power.

1.5 Contributions

This thesis proposes three approaches for analyzing and securing in-vehicle E/E architectures.
These approaches target both the design time and runtime aspects of security. Specifically
proposed are (1) a design time analysis for security in automotive networks, (2) a lightweight
authentication framework for authentication and authorization in automotive networks, and (3)
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a flexible message transmission scheme demonstrated on FlexRay, extending message sizes
and thus enabling security measures on time-triggered communication systems. These main
contributions are detailed in the following.

Security Analysis for Automotive Networks (SAAN). The basis for informed decisions in
any domain is the knowledge of the system. Decisions and comparisons regarding security are
difficult, as it is not trivial to quantify security. Typically, security evaluations are used, which
are based on expert analysis, supported by security analysis frameworks. These evaluations are
applied for hardware and software components. Currently, there is no option to analyze com-
plete automotive architectures or subsystems inside an architecture for security. This analysis,
however, is important, as the security of functions is heavily influenced by the architecture these
functions are implemented in.

This thesis proposes the Security Analysis for Automotive Networks (SAAN), which pro-
vides a method to analyze messages and functions in automotive architectures for security. The
analysis is based on the network architecture and established methods for component evalua-
tion. The architecture contains all devices, such as ECUs and gateways, interconnections be-
tween devices, and messages transmitted by these devices. The component evaluation describes
the exploitability and patchability of devices. Exploitability and patchability describe how fast
new security vulnerabilities, e.g. buffer overflows in the telematics unit [15], are discovered
and how fast these can be fixed, e.g. via software updates, respectively. While exploitability
depends highly on the design of the device, patchability depends mostly on the software update
cycle. These rates reasonably approximate the behavior of the system by defining the maximum
time between two exploits/patches.

To take into account the rates for exploitability and patchability, so the probabilities and
time-dependency of the system, a probabilistic model checking approach is used. As times
might vary in reality and exploitability and patching rates are not fixed, such variations are
accounted for in the model checking algorithm as exponential distributions for the occurrence
probabilities. To represent the time basis and probabilities of the evaluation, this thesis proposes
an efficient Continuous-Time Markov Chain (CTMC) model synthesis from the automotive
architecture and component evaluation, allowing model checking of the system [86].

State-space reduction and speed up of the computation are achieved by taking into account
the behavior and dependencies of typical automotive networks in the model generation. These
dependencies are flexibly defined as rules for every component. A CAN bus is, e.g., always
exploitable in terms of availability, i.e. susceptible to overriding of messages, as soon as one of
the attached ECUs is exploitable.

In addition to the model, a property needs to be defined, specifying the element or combina-
tion of elements of the architecture to be analyzed, as well as the time frame for analysis. The
CTMC and the property are then analyzed with probabilistic model checking algorithms from
literature [87]. The results describe the exploitability of the element to be analyzed within the
given time frame. E.g., an ECU can be analyzed for how long it is exploitable via a given bus
within one year.
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SAAN is evaluated on different architectures to prove its capabilities to find security flaws.
By enabling an evaluation of security in automotive networks, comparisons between different
architectures are possible. Through the automotive-specific model generation, the model size is
decreased by five orders of magnitude, in turn improving model checking performance by two
to three orders of magnitude over state of the art model generation.

Lightweight Authentication for Secure Automotive Networks (LASAN). The second ap-
proach is focused on securing in-vehicle network traffic. Meeting the real-time requirements
of automotive networks means that the secure setup needs to be performed efficiently. To se-
cure traffic, it is required to encrypt messages, authenticate communication participants and
authorize messages. This is typically ensured by authentication frameworks.

Traditional authentication frameworks, such as Transport Layer Security (TLS) [23] or Ker-
beros [119, 184], however, have high requirements for computation and data rate, which are
incompatible with automotive systems. These frameworks are employed in corporate networks
or the Internet, where real-time requirements are lower and high data rates for message transmis-
sions are available. Asymmetric cryptography is used in the establishment of message streams.

This thesis proposes Lightweight Authentication for Secure Automotive Networks (LASAN).
LASAN is specifically tuned to the automotive environment by providing authentication for
ECUs against a central root of trust, the security module. Authentication is performed in an
asynchronous fashion, thus not interfering with real-time requirements. Authenticated ECUs
may request authorization of message streams, which is granted based on manufacturer defined
Access Control Lists (ACL). Authorization is fully based on symmetric cryptography, minimiz-
ing the required time, and can be performed as required, or upfront at the start of the vehicle
to minimize the influence on real-time message transmissions further. A successful authoriza-
tion also contains a symmetric message key, allowing to encrypt the following data message
symmetrically.

Evaluations show that LASAN allows to set up message streams two to three orders of
magnitude faster than the state of the art. As LASAN has been optimized for the automotive
domain, it can be easily integrated with and support existing automotive processes, such as
Over-The-Air (OTA) updates or workshop maintenance and repair.

Policy-based scheduling using FlexRay. Implementing security on legacy communications
systems is challenging. Authentication and authorization, e.g., require to transmit relatively
large amounts of data in a short amount of time, but typically do not require periodical transmis-
sions. This is difficult to implement on time-triggered communication systems. Furthermore,
to ensure secure communication, a minimum amount of entropy must be available per message,
if multiple similar or equal messages are sent. This means that messages can not be too short in
size, as otherwise brute force attacks on encrypted messages become possible.

Existing time-triggered communication systems, such as FlexRay, are highly limited in their
flexibility regarding message lengths and transmission times, limiting the entropy available for
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security. FlexRay is a time-triggered communication system with data rates of up to 10 MBit/s
allowing to guarantee message transmission times [70]. It is thus highly suitable for safety-
critical data transmissions. However, the schedule for all message transmissions needs to be
defined at design time and cannot be changed at runtime. The policy-based scheduling for
FlexRay presented in this thesis enables a higher flexibility for messages on the bus. Assign-
ments of timeslots are treated more flexible, and slots are assigned to ECUs, which in turn place
messages based on a pre-defined policy. Thus, a virtual communication layer is established,
allowing to utilize the combined timeslots for message transmissions. Timeslot lengths do not
limit message lengths in such a systems, and short bursts or message transmissions, such as gen-
erated by authentication frameworks can be handled. Furthermore, as the underlying FlexRay
system does not need to be changed, full compatibility to existing FlexRay implementations is
kept.

Evaluating the proposed scheduling shows a decrease in message transmission latencies by
close to one order of magnitude over conventional FlexRay scheduling. Additionally, message
sizes and periods can be selected freely and are no longer bound to the restrictions set by the
communication system.

The rise of interconnectivity in vehicles raises many challenges in the domain of security.
The seemingly contrary requirements of security and real-time are analyzed and solved in this
thesis for three specific challenges. While the contributions are set in the context of the auto-
motive domain, they are, with generalization, applicable to other domains with similar require-
ments, as well. As such, this thesis contributes to the combination of security and real-time
requirements beyond the scope of the automotive domain.

1.6 Related Work

The following is an overview over the general literature in the area of automotive security,
including threats, countermeasures and integration. Additionally, adjacent domains to the auto-
motive application are explored. Literature directly related to the individual contributions will
be discussed in the respective chapters.

1.6.1 Automotive Threats

Currently, most internal communication in vehicles is insecure. Encryption is rare, and, if avail-
able, often uses similar keys across a series of vehicles and ECUs. Authentication is used espe-
cially when reprogramming ECUs, conventional data transmissions are typically not encrypted
or authenticated. The first extensive overviews of security in modern networked vehicles were
presented in [85] and [15], where it was shown that ECUs could be attacked and reprogrammed
directly, by obtaining pre-programmed security keys from the car tuning community. Most of
these attacks have been performed with direct connections to the vehicle, but in [15] attacks
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via external interfaces such as the integrated telematics unit have also been reported. More re-
cently, in [105], two vehicles were attacked extensively and in [106], multiple other vehicles
were qualitatively analyzed. The attacks by [105] were executed over direct connections to
vehicles, either to the OBD port or the networks directly. In [107], these attacks have been
extended and performed via a cellular connection. Further examples for attacks specifically for
the CAN network and countermeasures have been presented in [46]. A case study investigating
the likelihood of attacks on vehicles based on expert knowledge has been presented in [11].

To access the inside of the vehicle for further attacks, the locking system needs to be circum-
vented. In the literature, different analyses of locking systems and their attack vectors have been
presented. In [36], signals of keyless entry systems have been relayed over longer distances,
allowing to open vehicles without the key fob being present at the vehicle. Furthermore, smart-
phone apps by vehicle manufacturers have been analyzed in the literature. Some of these apps
offer the opening of the car from distance and can be circumvented [80]. Once in the vehicle,
the OBD port and vehicle networks can be accessed for further attacks. To start the motor, the
immobilizer needs to be bypassed. An attack on immobilizer chips has been presented in [175].
Many of the presented attacks are limited to a certain make and model of a vehicle. Often, such
specific attacks are not found by researchers and published, but are available in the tuning and
car theft communities online.

1.6.2 Intrusion Detection, Network Analysis & Verification

Intrusion Detection systems are commonly used in corporate networks to discover attacks in
the network, e.g., based on known message patterns for attacks or continuous comparison of
traffic to a baseline [21]. In [106], a vehicle IDS has been proposed to detect anomalies in
the vehicle network traffic by constantly comparing traffic to a baseline. The approach in [45]
utilizes concepts like detection models known from the computer domain and ports these to
the automotive domain. There, also the interaction with the driver is investigated, as responses
from IDSs in a safety-critical context can not always be automated. Other approaches, such
as [116] are based on the entropy of traffic, allowing a flexible detection of attacks without
requiring predefined attack patterns. Intrusion detection can be significantly more difficult when
attackers do not perform their attacks in a straight forward fashion, but instead try to hide
their intentions by obfuscating their attacks. In [25], a method to detect obfuscated attacks is
described. Commercial IDSs are available, but their inner workings are not publicly available
[4, 170].

To validate the security of in-vehicle networks, [158] propose a combined evaluation of
safety and security requirements of an AUTomotive Open System ARchitecture (AUTOSAR)
architecture.
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1.6.3 Encryption and Hardware Support

Initial efforts to introduce encryption into real-time vehicular networks have been presented in
the literature [145]. To unify protection efforts, the Hersteller Initiative Software (HIS) has
specified a cryptographic accelerator, called Secure Hardware Extension (SHE) for use in ve-
hicles [30]. The SHE is a cryptographic accelerator with cryptographic storage and is based on
the security module defined as EVITA Hardware Security Module (HSM) light in the EVITA
project [152]. Support for encryption and key storage can also be achieved with a Trusted Plat-
form Module (TPM) [62]. Microcontrollers used in ECUs are in many cases available with
integrated compatible hardware security modules [123, 5]. In [153], security functions are in-
tegrated into the hardware of the network controller, achieving higher real-time performance
and determinism than layered approaches. Similarly, [154] proposes a seamless integration of
security on system-level, based on FPGA reconfiguration techniques.

To limit the latency impact on the real-time communication, symmetric cryptography such
as AES [120] and the AES-based CMAC [26] have been chosen in the SHE and elsewhere
in the literature, since these approaches are computationally simpler. These algorithms are
significantly faster, especially with the hardware support of the SHE. Symmetric encryption
requires that secret keys are known to all participants of a protected communication. This opens
a new attack vector, as keys are often pre-programmed into ECUs and valid for the lifetime
of the ECU [85]. In case a key becomes known, such as described in [85], attacks for the
lifetime of vehicles or possibly on complete vehicle fleets are possible. These scaling effects
can be dangerous, as an attacker can leverage an attack on millions of vehicles. With the more
widespread use of vehicles in external networks, this recovery and publishing of secret keys will
increase, as more groups can reap the benefits. An approach to mitigate scaling effects through
obfuscation of CAN message IDs has been proposed in [97].

1.6.4 Security Integration

One approach to employing symmetric cryptography and limiting the overhead of additional
security in legacy communication systems is to use Message Authentication Codes (MACs).
These are based on symmetric cryptography, allowing fast and efficient computation, especially
on ECUs with limited computational power. In [94], MACs are introduced to CAN and safety
and security are considered in an integrated functional model mapped to a CAN architecture.
In [42], an approach to introduce MACs into FlexRay is presented. There, the Timed Efficient
Stream Loss-Tolerant Authentication (TESLA) protocol is employed for time-delayed release
of keys in the time-triggered segment of FlexRay. While TESLA supports sender authentica-
tion with symmetric mechanisms, it does not authenticate communication partners or authorize
communication streams. In [180], a CMAC is utilized and integrated with the CRC of the
underlying communication system, reducing the overhead and achieving the required sender
authentication and message integrity checks. By including the security considerations in the
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design phase of systems, [79] achieve time efficiency with low hardware overhead. To be able
to ensure real-time behavior, all of these approaches employ symmetric cryptography, requiring
a pre-shared key.

Others, such as [44] propose the use of Virtual CANs (VCANs), similar to virtual networks
in the consumer and corporate domains, to separate network traffic.

1.6.5 Other domains

While the above approaches focus on in-vehicle networks, the adjacent domain of car-to-x
(car-2-x, c2x) technologies received more extensive coverage in literature. Noteworthy here
is the Secure Vehicle Communication (SeVeCom) project [81]. This outlined a first attacker
model and proposed security mechanisms for c2x networks. SeVeCom proposes to rely on
multiple levels (long-term, short-term) of public-key mechanisms. This approach has been
used in other projects and multiple consortia are now working on c2x technologies. However,
participants need sufficient computational resources for asymmetric cryptography to implement
these systems. These resources are typically available for selected ECUs communicating with
external vehicles, such as in the c2x scenario, but not necessarily for every ECU in the vehicle.

Significant progress in securing communication has been achieved in other areas where
embedded systems are used to transmit data. The smart grid is a prime example of progress in
this domain. Multiple approaches have been described in literature to achieve this. In [132] a
system-level approach to secure smart meters has been proposed, based on the hardware support
presented in [131]. In [155] an approach to secure communication for the smart grid has been
proposed. There, TLS has been used to secure the communication of the backbone. However, in
comparison to smart metering applications, the real-time constraints in the automotive domain
are far stricter.

1.6.6 Summary

The above overview of existing literature given here is a general introduction to automotive se-
curity and adjacent areas. More detailed work relating directly to the contributions of this thesis
will be discussed in the individual chapters. There, also the differentiation of the individual
approaches will be discussed in greater detail.

The contributions in this thesis seek to prevent some of the automotive threats discussed
in Section 1.6.1. Note that the prevention methods presented in this thesis focus on attacks
executed in the internal vehicle network. Methods to prevent external entry, e.g., a firewall at
the telematics unit, will not be discussed. All attack scenarios in this thesis assume that an
attacker already has access to the internal vehicle networks. However, the impact of attacks
through external interfaces on the internal systems is considered in Chapter 3.

The contributions in this thesis complement other defense techniques, such as Intrusion
Detection (IDS) and Prevention Systems (IPS). While IDS and IPS seek to detect and prevent
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ongoing malicious actions by an attacker with access to the internal network, the proposed
authentication framework in this thesis seeks to prevent such access beforehand. In case this
should fail for any reason, an IDS or IPS comes into play to take additional actions, limiting the
attacker’s options.

Existing evaluation methods for vehicle security, such as [158], evaluate systems based on
Hardware-in-the-loop (HIL) and Software-in-the-loop (SIL) tests. To perform these tests, the
systems or the respective parts under test need to be developed and built. Security Analysis
for Automotive Networks (SAAN), as presented in Chapter 3, complements such evaluation
systems and does not show this restriction. Vehicle systems and concepts can be analyzed
without the need to built a prototype of the system. This allows to judge the security of a
system early in the development process. As SAAN verifies concepts, this does not necessarily
replace HIL and SIL analysis required to identify implementation flaws.

The cryptographic approaches presented in literature form the basis of the contributions
in this thesis. Developing secure and efficient cryptographic algorithms is a highly complex
mathematical matter. Therefore, proven algorithms and encryption schemes should be used in
applications. We follow these recommendations and built on existing work. Similarly, we utilize
cryptographic accelerators to speed up encryption and decryption processes. More details and
comparisons will be presented in Chapter 4.

In a similar fashion, the proposed approaches can make use of integration as shown in
Section 1.6.4. Integration with MACs can minimize the required bandwidth further. Such
optimizations of the proposed approaches are highly dependent on the utilized bus systems,
but should be considered in future work. An approach for integrating security into FlexRay is
proposed in Chapter 5. Other approaches, such as VCANs [44], are orthogonal to the proposed
approaches can be used to complement these.

In summary, the contributions of this thesis are utilizing some of the existing concepts and
can complement others to achieve security for automotive E/E architectures.

1.7 Organization and Bibliographic Notes

This work has been performed under the Campus for Research Excellence And Technologi-
cal Enterprise (CREATE) program and was financially supported by the Singapore National
Research Foundation (NRF). Within the CREATE program, Technische Universität München
(TUM) CREATE focuses on electric vehicles. One of the goals of TUM CREATE was the de-
velopment of an electric taxi. The developed taxi EVA and specifically its infotainment system
will be introduced in Chapter 2. In the development of this infotainment system, a number of
security challenges surfaced. These security challenges significantly influenced the remaining
chapters of this thesis. We thus motivate the contributions of this thesis through the design
experience gained with EVA, as detailed in Chapter 2. Parts of this have been published in
[128].
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In Chapter 3, the focus is on the security of the overall communication system, including
all its components and interfaces. There, an approach to evaluate architecture security at design
time with probabilistic model checking is described. Parts of this work have been published in
[115].

Chapter 4 uses the design example shown in Chapter 2 to design a secure authentication
framework for the use in the automotive domain. This framework permits authentication and
authorization at runtime, is verified for security, and integrated with the automotive lifecycle.
Furthermore, a simulator for the evaluation of security in automotive networks is proposed.
Parts of this work have been published in [111], [112] and [114].
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system FlexRay more flexibly while keeping all guarantees. Parts of this work have been pub-
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Parts of this thesis are available in the following publications:

• Philipp Mundhenk, Andrew Paverd, Artur Mrowca, Sebastian Steinhorst, Martin Luka-
siewycz, Suhaib A. Fahmy, Samarjit Chakraborty. Security in Automotive Networks:
Lightweight Authentication and Authorization. In: ACM Transactions on Design
Automation of Electronic Systems (TODAES) 22, 2 (2017), pp. 25:1–25:27. DOI:
10.1145/2960407

• Philipp Mundhenk, Artur Mrowca, Sebastian Steinhorst, Martin Lukasiewycz, Suhaib
A. Fahmy, Samarjit Chakraborty. Open Source Model and Simulator for Real-Time
Performance Analysis of Automotive Network Security. In: ACM SIGBED Review
13, 3 (2016), pp. 8–13. DOI: 10.1145/2983185.2983186

• Philipp Mundhenk, Sebastian Steinhorst, Martin Lukasiewycz, Suhaib A. Fahmy, Samar-
jit Chakraborty. Security Analysis of Automotive Architectures using Probabilistic
Model Checking. In: Proceedings of the 52nd Design Automation Conference (DAC
2015). USA, 2015, pp. 38:1–38:6. DOI: 10.1145/2744769.2744906

• Philipp Mundhenk, Sebastian Steinhorst, Martin Lukasiewycz, Suhaib A. Fahmy, Samar-
jit Chakraborty. Lightweight Authentication for Secure Automotive Networks. In:
Proceedings of the Conference on Design, Automation and Test in Europe (DATE 2015).
France, 2015, pp. 1–4. DOI: 10.7873/DATE.2015.0174

• Philipp Mundhenk, Florian Sagstetter, Sebastian Steinhorst, Martin Lukasiewycz, Samar-
jit Chakraborty. Policy-based Message Scheduling Using FlexRay. In: Proceedings of
the 12th International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS 2014). India, 2014, pp. 19:1–19:10. DOI: 10.1145/2656075.2656094



34 Chapter 1. Introduction

• Sebastian Osswald, Daniel Zehe, Philipp Mundhenk, Pratik Sheth, Martin Schaller,
Stephan Schickram, Daniel Gleyzes. HMI Development for a Purpose-Built Electric
Taxi in Singapore. In: Proceedings of the 15th International Conference on Human-
Computer Interaction with Mobile Devices and Services (MobileHCI 2013). Germany,
2013, pp. 434–439. DOI: 10.1145/2493190.2494089

The following publications are related to the topic of this thesis, but not a direct part hereof:

• Martin Lukasiewycz, Philipp Mundhenk, Sebastian Steinhorst. Security-aware Obfus-
cated Priority Assignment for Automotive CAN Platforms. In: ACM Transactions
on Design Automation of Electronic Systems (TODAES) 21, 2 (2016), pp. 32:1–32:27.
DOI: 10.1145/2831232.

• Martin Lukasiewycz, Sebastian Steinhorst, Sidharta Andalam, Florian Sagstetter, Peter
Waszecki, Wanli Chang, Matthias Kauer, Philipp Mundhenk, Suhaib A. Fahmy, Shanker
Shreejith, Samarjit Chakraborty. System Architecture and Software Design for Elec-
tric Vehicles. In: Proceedings of the 50th Design Automation Conference (DAC 2013).
USA, 2013, pp. 95:1–95:6. DOI: 10.1145/2463209.2488852

• Licong Zhang, Debayan Roy, Philipp Mundhenk, and Samarjit Chakraborty. Schedule
Management Framework for Cloud-based Future Automotive Software Systems. In:
Proceedings of the 22nd IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, (RTCSA 2016), South Korea, 2016, pp. 12–21.
DOI: 10.1109/RTCSA.2016.11

• Shanker Shreejith, Philipp Mundhenk, Andreas Ettner, Suhaib A. Fahmy, Sebastian Stein-
horst, Martin Lukasiewycz, Samarjit Chakraborty. VEGa: A High Performance Vehic-
ular Ethernet Gateway on Hybrid FPGA. In: IEEE Transactions on Computers (TC).
[To Appear]

• Peter Waszecki, Philipp Mundhenk, Sebastian Steinhorst, Martin Lukasiewycz, Ramesh
Karri, Samarjit Chakraborty. Automotive Electrical/Electronic Architecture Se-
curity via Distributed In-Vehicle Traffic Monitoring. In: IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems (TCAD).
DOI: 10.1109/TCAD.2017.2666605 [To Appear]



2
Design Experience - EVA

After introducing the basic concepts of vehicle networks and security, as well as the associated
challenges, this chapter will introduce the prototype electric taxi EVA. The design experience
gained with EVA has significantly motivated and influenced the research presented in this work.

2.1 Introduction and Summary

EVA has been designed and built in TUM CREATE as an electric taxi for tropical megacities
(see Figure 2.1). Taxis in megacities often drive large distances per day, in Singapore up to
500km in up to 24h per day. This puts severe strain on the limited battery technology available in
the market today. These distances can not be achieved with conventional electric cars converted
into taxis, without long breaks for charging. TUM CREATE developed EVA from ground up as
an electric taxi, with a significantly larger battery than conventional electric cars and additional
fast charging capabilities. Additional strain on the battery is induced by the air-conditioning, a
necessity in tropical cities. EVA is equipped with an efficient overhead air-conditioning in four
different climate zones, personalized for each seat.

Besides the battery and air-conditioning, EVA contains many other innovations, among them
a novel infotainment system, based on smartphone interactions. While cars typically have a life
time in the range of up to 10 years and development cycles of typically 7-8 years, consumer
electronics changes at a far more rapid pace. Consumer electronics such as smartphones are
often replaced every two years, following the rapid speed of development. This leads to vehicles
with integrated infotainment systems to be outdated shortly after the start of their lifecycle.
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(a) Front (b) Rear

Figure 2.1: The electric taxi EVA, built in TUM CREATE. This vehicle will serve as the design experience
for a secure vehicle in this work, [171].

To avoid this situation, EVA does not have any fixed integrated screens for passengers, but
is providing services that can be used with a smartphone. The passengers can use their own
smartphones and a provided app to connect to EVA and control a variety of functions. These
functions include the air-conditioning, music streaming to personal speakers built into the seats
and payment functions, among others.

For higher comfort of the driver and passengers and to satisfy the safety requirements, two
screens have been built into EVA. These screens are constructed modular, based on tablet com-
puters and use the same web service interface as the smartphones. This modularity, both me-
chanically and in software, allows to easily and cost efficiently update the screens over the
lifetime of the taxi. One of the screens, the Central Information Screen (CIS) is built promi-
nently into the center console and used as a central control point for all functions in EVA. The
Instrument Cluster (IC) is placed behind the steering wheel and is used for driving and safety
related information, minimizing distractions of the driver (see Figure 2.3(a)).

The use of passenger smartphones and highly integrated tablets allows the reduction of
screens and computers per seat and with this a reduction in weight and electricity consumption.
Furthermore, the modular concept allows fast exchanges of the built-in components, supporting
cost efficient maintenance and upgrades of the system. However, allowing the passenger to con-
nect his device to the vehicle opens an attack vector into the vehicle. In EVA, the passenger and
internal networks have been connected over a gateway and firewall. While the firewall ensures
that passenger devices cannot access restricted functionality, the gateway ensures the contex-
tual correctness of the accessing device. This way, all input to the vehicle can be checked for
correct content, value bounds, etc. The security in the infotainment system is build on existing
standards from the Internet and computer networking domains. When trying to extend the same
security protocols to the real-time networks, it became evident that little work is existing in this
domain. Additionally, real-time constraints significantly complicate the introduction of security
into such systems.
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2.1.1 Summary

For the electric taxi EVA, a novel infotainment system has been designed and developed that
allows passengers to control functions in the vehicle from their seat, while being secure. This
infotainment system reduces the energy-consumption, as well as the weight of the vehicle, while
ensuring full functionality, due to the reduction of screens and control elements in the vehicle.

The novel infotainment system designed for EVA inspired the approaches presented in the
following chapters of this thesis. While designing and implementing the infotainment system,
multiple challenges regarding the security of such a system and more general automotive ar-
chitectures came to light. For these questions, the available literature did not always supply
sufficient answers. These approaches will be detailed in Chapters 3 to 5.

2.2 Architecture

All interface devices (smartphones and screens) are connected via wireless networks (WiFi) to
a central car server. This server consolidates and coordinates all services of the infotainment
system in EVA and additionally provides the interface to the real-time networks of EVA. Besides
the communication of smartphones and tablets, the server also provides access to the integrated
High-Definition (HD) cameras and control of the taxi sign on the roof. The architecture is
shown in Figure 2.2.

The wireless networks are split into two physically separate networks, to ensure the separa-
tion of traffic of passenger devices and internal devices, such as CIS, IC and the smartphone of
the driver. Devices on the passenger network have read access to many of the functions hosted
on the central server, such as location information, status of the taxi meter, etc. However, their
write access is severely limited to a strictly filtered set of functions ranging from special pay-
ment service interfaces and the sound system hosted on the central server to the air-conditioning
on the real-time networks via a gateway. Devices on the internal network in contrast, have sig-
nificantly more rights and can, depending on the device type, write location data, start and stop
the meter, override air-conditioning and sound options and lock and unlock the vehicle doors
(see Table 2.1).

Every seat is equipped with stereo speakers, directly connected to the central server, result-
ing in eight sound channels, routed on the central server. The stereo channels can be indepen-
dently controlled from the passenger smartphones (per seat), or from the CIS. Internet radio
channels are available and music can be streamed from the passenger smartphone. The HD
cameras are available via streams on the devices on the internal network. For possibly required
proof to insurance in case of accident, the cameras additionally record in a 24h loop, whenever
powered. The central server provides internet to all devices on the WiFi networks. When on the
road, a cellular 4G modem is installed, in the workshop, an existing WiFi connection is used.
The WiFi connection in the workshop supports further access to data loggers and the controller
of the real-time networks in EVA for debugging purposes.
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Figure 2.2: Integration of the infotainment system inside EVA and with the automotive workshop net-
works. The central server hosts two WiFi networks (“public”, “private”) for all user interfaces to
connect to. Cameras and external interfaces are connected via an Ethernet switch. Real-time controller
and data logger are integrated with the infotainment system for simplified debugging. The auxiliary CAN
bus of the vehicle is connected both to the central server and to the real-time controller directly.

(a) Dashboard of EVA, including the CIS and the IC (b) Smartphone on the passenger armrest

Figure 2.3: The components of the infotainment system built into EVA, including Central Information
Screen (CIS), Instrument Cluster (IC) and passenger smartphone, [171].
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Table 2.1: Examples from the Access Control List (ACL) for webservices on the central server. Public
devices, such as passenger smartphones are allowed highly limited access. Private devices, such as
Instrument Cluster (IC) and Central Information Screen (CIS) have significantly more access rights.
Further filters are applied, based on device type or seat.

Function Access
public private

Taxi meter read read & write
Cameras (front/read) read read
Location read read & write
Vehicle Locks none read & write
Instrument Cluster theme none read & write
Vehicle shutdown none write
Emission statistics read read & write
Speaker volume (per seat) read & write read & write

2.3 Implementation

In this section, the implementation of the following four main components is described:

1. Central Server The central server coordinates and connects all devices in the networks.

2. Central Information Screen (CIS) The CIS is a touchscreen located in the center con-
sole and the main interaction point for all non-driving related controls.

3. Instrument Cluster (IC) The IC is the display located behind the steering wheel and
displays driving-related information to the driver.

4. Smartphones The smartphone applications are split into driver and passenger apps. While
the driver app does not contain the payment functions, the passenger app is not able to
lock and unlock the vehicle.

The implementation of all devices is shortly described in the following sections.

2.3.1 Central Server

The central server forms the backbone of the infotainment system. It provides the WiFi net-
works, a gateway to all services in the network and interconnects all devices.

Hardware. The server is a commercial off-the-shelf (COTS) computer with Intel Core i3
processor, 2 GB of main memory and passive cooling. It is equipped with three Ethernet ports
to connect the cameras on individual ports and the external connection, as well as data logger
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Figure 2.4: Software architecture on the central server of the EVA infotainment system. Most services
rely on the message passing and task scheduling system built into the infotainment system core, which in
turn is based on the Restlet framework. Some components bypass the core and the Restlet framework for
direct access to components, such as the CAN bus drivers or the PulseAudio sound system.

and real-time controller on the third port. Furthermore, two MiniPCIe WiFi adapters are added
as access points for the two WiFi networks. The taxi sign on the roof of the car is connected via
Universal Serial Bus (USB). An additional MiniPCIe adapter acts as Controller Area Network
(CAN) bus adapter. Finally, four USB sound adapters are used to connect the stereo speakers
on every seat to the central server.

Software. The infotainment system software is implemented in Java running on the Ubuntu
Operating System (OS) of the server. Some parts of the software, such as the connection to
the CAN bus and the support for multiple sound channels uses access to the native functions
of the OS, either via C code and the Java Native Interface (JNI) or via direct execution of shell
commands from Java (see Figure 2.4).

To address the sound adapters, the Linux audio system PulseAudio has been utilized. PulseAu-
dio can be controlled via the command line and a corresponding Application Programming In-
terface (API) has been developed to allow control of PulseAudio from Java. The API is available
as open source [110].

Components. The software is modular and new components can be supplied in the form of
Java Archive (JAR) files. These components are detected and loaded automatically at the start
of the infotainment system software. An included module is responsible for updates, which can
be supplied to a server and are automatically downloaded and activated after a restart of the
system. Components are grouped by function and subdivided into modules and services. Mod-
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ules have access to local components, such as sound adapters and the taxi sign, while services
offer webservices, reachable from the devices in the vehicle. Each component is started in a
separate thread of the main system. Components may start further threads, e.g. for the handling
of incoming webservice requests. A watchdog service is continuously checking heartbeat sig-
nals to find non-responding threads. Due to exhaustive testing, this situation should not occur
in normal operation of EVA, but cannot be avoided when prototyping new functions.

Communication. Communication between components is achieved in a Service Oriented Ar-
chitecture (SOA) fashion. Components can publish and subscribe to messages via the info-
tainment system core. The core is also responsible for receiving messages from, filtering and
passing messages to components.

Communication with devices in the infotainment system is implemented via webservices.
The Restlet library is used to implement the server. The data type of webservice communica-
tion is JavaScript Object Notation (JSON). The formats of all messages have been pre-defined.
Webservices are used for all non-time critical communication, starting from the devices. If time
critical updates, such as location or speed are to be delivered to the device or changes in the sys-
tem state are to be communicated, a User Datagram Protocol (UDP) connection is used. This
connection is established on registration of the device in the vehicle.

2.3.2 Central Information Screen (CIS)

The Central Information Screen (CIS) is the main information and interaction screen promi-
nently located in the center console of EVA.

Hardware. The CIS uses a COTS tablet as hardware platform. This reduced the development
time significantly and provides a highly integrated platform. The tablet comes with additional
features, which are used for different functions, such as microphone, speakers and Global Po-
sitioning System (GPS). The GPS is used, e.g., to provide location information to the central
server, which in turn distributes it to all devices in the vehicle. When EVA is turned off, the CIS
is turned off as well. It is started as soon as a voltage is applied to the charging port. This way,
the vehicle control systems can start the CIS.

Software. The CIS uses the Android-based operating system. On top of the OS, a custom
application is implemented. The application is launched automatically and runs in fullscreen.
To achieve some required functions, such as power control and a custom location provider, the
tablet is rooted. This allows more control over the built-in functions.

Communication. All communication in the CIS is achieved via the WiFi interface to the
central server. When power to the charging port of the CIS is turned on, the tablet is configured
to start automatically. On startup, the CIS registers at the central server and is assigned an
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identifier (ID). After registration, the CIS is usable for passengers and driver. GPS is started
and location updates are pushed to the central server. There, location updates can be filtered,
fused, etc. before they are sent back to the CIS via the UDP connection. On reception of the
shutdown command via UDP, the CIS turns off.

2.3.3 Instrument Cluster (IC)

The IC is a screen located behind the steering wheel, providing driving-related information to
the driver.

Hardware. The IC uses the same COTS tablet as the CIS with similar settings. The inter-
nal WiFi connection is used to connect to the central server, allowing data exchange with the
other devices in the infotainment system. Additionally, the IC is equipped with a Bluetooth-
CAN adapter, translating commands on the control networks of EVA to messages for the tablet.
This way, a direct connection between the control networks and the IC is created, reducing the
amount of time before critical information is shown to the driver. While there is no direct inter-
action with the IC via the touchscreen, one of the levers on the steering has been dedicated to
control the IC. This lever allows simple actions, such as switching the informational views in
the center of the screen.

Software. As the CIS, the IC is based on an Android-based OS. The rooted OS allows access
to start and shutdown functionality, as well as custom location providers. The custom appli-
cation provides the dashboard for the electric vehicle. In addition to standard values, such as
speed, motor energy consumption and battery state of charge (SOC), the current status of the
taxi meter is shown (free, hired, ...). Furthermore, an informational display has been integrated,
allowing to switch between different views, including a map of the current location of the ve-
hicle, as well as overall energy consumption and the rear-view camera in reverse gear. The IC
also indicates any open doors in the vehicle and alerts and alarms the driver in case of faults in
the car, e.g., with the high-power battery.

Communication. Communication is implemented via WiFi and Bluetooth. As the IC is
showing mostly driving related information, most data is received via Bluetooth. However,
for location information and taxi meter status, the IC registers with the central server over WiFi.
This process is similar to the one on the CIS above. It is important to note that beside admin-
istrative messages, the IC has no need and thus no capability to transmit messages on neither
WiFi nor Bluetooth/CAN. While on WiFi this behavior can be enforced also on the side of the
network, e.g., by segmenting the network and not accepting messages, there is no way to en-
force this behavior on CAN. The bus relies on correct operation of all attached devices. The IC
software has to be tested and trusted to behave according to the specification.
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2.3.4 Smartphones

The smartphones are used by driver and passengers. They are not continuously located in EVA
and can be removed. An application on the smartphone is used to connect to the vehicle and
control all functions.

Hardware. For the current version of EVA we use COTS smartphones. These conventional
phones are WiFi enabled and have a built-in Near Field Communication (NFC) reader. WiFi is
used for communication with EVA and NFC is used to determine the seat of the passenger, based
on NFC chips in the armrest of the passenger seat. The smartphone of the driver additionally
includes Bluetooth, allowing to connect to the vehicle to unlock the device.

Software. Similar to the CIS and IC, the smartphones use an Android-based OS. An appli-
cation is used to control all functionality in EVA. While design and overall functionality is
kept similar between the driver and passenger phones, the driver phone includes additional
functionality to lock and unlock EVA. In turn, it does not include payment functions. The ap-
plication contains all required functions, no manual interaction by the passenger is necessary.
This includes the automatic connection to the internal WiFi network of EVA and the set up of a
streaming server for music streaming to the vehicle. The seat of the passenger is determined by
tapping the phone on the armrest. The armrest is equipped with NFC chips, encoding the seat
of the passenger as a Uniform Resource Locator (URL). Screenshots of a selection of screens
are shown in Figure 2.5.

Communication. While the driver smartphone shares the internal WiFi with the built-in de-
vices CIS and IC, the passenger smartphones use a separate network, set up by the central
server. All traffic for the smartphones is routed via a Representational State Transfer (REST)
API. More time-critical updates are sent via UDP. The communication constructs are similar
to those of the internal devices, but are separated on the central server through the network
interface of the WiFi network. This way, the smartphones are only allowed access to a non
safety-critical subset of all functions in EVA (see Section 2.4.2). To determine the seat of the
passenger, NFC is used.

The driver smartphone additionally uses Bluetooth for connecting to the internal real-time
networks and lock/unlock or start/shutdown EVA.

2.4 Evaluation

The electric vehicle EVA has been unveiled at the Tokyo Motor Show in November 2013.
After further safety tests, especially regarding the large battery, EVA has been presented to
the general public in full driving functionality in April 2015. The feedback received for EVA
and especially the infotainment system was enormous, ranging from local Singaporean media
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(a) Location Information (b) Radio Settings (c) Air Conditioning

Figure 2.5: Screenshots of the EVA smartphone app, showing (a) the location of the vehicle, (b) the
settings for personal radio selection, and (c) the settings screen for the personalized air conditioning.

outlets [126, 183] over Asian media outlets [32, 129] to well-known European and American
newspapers and media outlets [82, 89, 93, 130, 169, 179]. The responses with regard to EVA’s
infotainment system have been positive throughout.

2.4.1 Performance

On the side of the technical performance, we separate into the devices in the vehicle:

Central Server. Efficiency of the central server is key. As the device uses passive cooling and
mounted in a confined space with limited airflow, it is required to operate as efficiently as possi-
ble. The software has been optimized as much as possible through the use of efficient software
bundles and to avoid any busy wait periods. Experimental results show that the average usage
of the Central Processing Unit (CPU) is in the area of 10%. Higher values are reached when
utilizing the sound system. This utilization stems from PulseAudio, effectively being used as
an audio mixer with multiple inputs (sources) and outputs (sinks). The software implementa-
tion lacks efficiency. The CPU utilization with playback on all seats and ten input streams can
reach up to 50% of the built in Core i3 processor. With prolonged playback, the generated heat
cannot be dissipated and the central server will need to shut down. Furthermore, the playback
of a single input source playing on multiple seats is delayed between different seats (sinks).
Thus, for prolonged multi-channel use of the system beyond the prototype stage, the software
audio mixer needs to be replaced with a computer-controlled hardware option, being capable
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of routing sound sources without CPU overhead. As the sound system is built modular, the
replacement of the components for control of a hardware mixer is trivial.

Central Information Screen (CIS). The Central Information Screen (CIS) is mostly respon-
sible for driver information and interaction. As most computations for this are performed on
the central server, the performance utilization of the device is low. However, the constantly
switched-on touchscreen of the device, as well as the WiFi interconnection consume a large
amount of electricity. Furthermore, the CIS is delivering the coordinates and speed of the ve-
hicle, calculated based on the GPS signal. This requires a significant amount of power. When
designing the system, the power supplied to the CIS was often not sufficient to cover these
functions fully, leading to the device turning off, due to lack of power. Investigations showed
high losses on the power cable included by the manufacturer. To mitigate the power losses, the
charging voltage and thus the current were increased to the maximum allowed by the hardware
through the vehicle power supply. The resulting charging current is able to provide sufficient en-
ergy for the CIS to operate with all functions active and additionally charge the internal backup
battery. While this solution is reasonable in a prototype, the CIS is operating at the maximum
of its power capabilities. For series production, it should be considered to use a dedicated GPS
receiver with higher energy efficiency.

Instrument Cluster (IC). The Instrument Cluster (IC) has simple informational purposes.
For this, the internal display and WiFi connection, as well as a dedicated Bluetooth connection
to the vehicle CAN bus are employed. The power and CPU consumption of these components
are well within the limits of the device and supplied energy.

Smartphones. Similar to the IC, the smartphones have mostly informational character, rely-
ing on the touchscreen and WiFi networks. Positioning information is transfered from the cen-
tral server to the smartphone, thus GPS functionality is not required. In case of music streaming,
an additional File Transfer Protocol (FTP) server service is started in the phone. However, as
this is used for audio data, which typically has a low data rate, this does not significantly in-
crease the power consumption or computation load.

2.4.2 Security

An important consideration for any infotainment system is security. As a wide range of inter-
connections are employed here, it needs to be ensured that these do not interfere with security
concerns. E.g., it needs to be ensured that no passenger can use their smartphone to access
internal functions of the vehicle, such as control over the brakes or battery. This also holds for
more malicious passengers who might directly attack the vehicle with a laptop and specialized
penetration software. The use of standardized connections, such as WiFi would generally al-
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low such a behavior, thus precautions need to be taken by the developers. In the following, a
selected set of precautions taken in the infotainment system of EVA shall be shortly explained:

Separate networks. As both, internal devices (CIS, IC) and passengers, access the system
over WiFi, it needs to be ensured that no unauthorized function access is possible. To achieve
this, EVA uses separate WiFi networks for the internal (“private”) and passenger (“public”)
functions. Both networks are located in individual subnets and the central server is providing
two access points. The routing tables in the central server are configured such that no packets
are passed between these two networks.

Separate passwords are used for the networks. The passenger network names and passwords
are encoded in the NFC chips in the passengers armrest and are thus individual for every vehicle.
The smartphone app developed for EVA evaluates this information and automatically connects
to the correct network. The internal network passwords are stored in the internal devices (CIS,
IC).

Access limitations. All access functions and communication via devices is routed via the
central server. There, an Application Level Gateway (ALG) is ensuring that devices can only
access functions they are authorized for. This is done in multiple steps. Filtering based on
IP address is enabled. Together with the separate networks as described above, this ensures
that only devices from the right networks can access internal functions. Furthermore, a device
filter is integrated, as not every device type is allowed to access every function, even inside the
internal network.

Devices need to register with their type, IP address and a unique identifier at the start of the
system. For internal devices, only a single device of every type (CIS, IC) is allowed access to
the system. As soon as a single device of a certain type is registered, the slot for this device type
is blocked and no further devices are allowed to register. This ensures that internal devices can
only register at the start of the vehicle and their registration cannot be overridden by malicious
passengers later, even if access to the internal WiFi is gained somehow. The unique identifier of
the registered device is used in all requests to the central server, ensuring that only the permitted
devices can access the functions.

Passenger smartphones follow the same setup procedure, but, contrary to internal devices,
the number of smartphones that can be registered is not limited.

Data encryption. Some broadcast push messages, such as location information, are trans-
fered unencrypted. All other traffic is based on a Service-Oriented Architecture (SOA) and
transfered over Hypertext Transfer Protocol (HTTP). This allows to easily encrypt traffic with
HTTPS with conventional methods, as used on the Internet.
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2.5 Concluding Remarks

The EVA infotainment system has been built as a prototype for an infotainment system for taxis,
evolving around the passenger and driver. Instead of fixed mounted screens, the smartphones
of the passengers are used as interfaces. This reduces the weight and power consumption of
the system significantly. However, the Bring Your Own Device (BYOD) approach also triggers
significant security questions, as parts of the vehicle network are opened to potentially malicious
passengers. The protection of the internal networks has been realized in the form of a firewall
and Application Level Gateway (ALG). However, this limits the possibilities of interactions and
adds significant performance overhead on the gateway itself, which is forwarding and filtering
all traffic. Furthermore, in case of a breach of this gateway or the implemented concept, the
internal vehicle networks might lie open for an attacker.

In the remainder of this thesis, new approaches for security in vehicles will be highlighted,
which target these gaps, by introducing security on all levels of the vehicle networks. These
approaches allow to deemphasize the role of a gateway and instead focus on implementing
security in a more distributed fashion. Thus, a single failure might not lead to insecurities in the
overall system. Furthermore, methods to quantify security will be shown, which can be used to
compare different security approaches.





3
Probabilistic Security Analysis for

Automotive Architectures

3.1 Problem Description and Summary

Within the past two decades, the amount of electronics and software in automotive systems has
increased rapidly. Today, top-of-the-range vehicles comprise up to 100 Electronic Control Units
(ECUs) and several heterogeneous bus systems, implementing a variety of applications ranging
from comfort to active safety functions.

While functional and safety requirements were always fundamental considerations in the de-
sign of automotive architectures, security is becoming a major challenge for many emerging ap-
plications [145]. Consumers and car manufacturers understand the benefits of cloud-connected
services in vehicles, making modern infotainment systems, adaptive route planing, or over-the-
air updates of software possible. However, it is also well understood that these applications
present the risk of vulnerability to hacking attacks (see Chapter 1).

In current approaches, vehicle networks are shielded with firewalls at the external interfaces
to ensure security. However, internal security is often not considered. Upon breach of a fire-
wall, the network is openly accessible to the attacker. Such an example attack is illustrated in
Figure 3.1.
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Figure 3.1: Illustration of a possible exploit in an automotive architecture. In normal operation, the
park assist (PA) controls the power steering (PS) with the message stream m that is sent via the gateway
(GW). If the telematics module (3G) is hacked (-), a message stream m′ with an identical identifier
ID(m) = ID(m′) can control the steering (�).

3.2 Related Work

Studies show that traditional automotive architectures that were not designed with security in
mind are highly vulnerable [15, 85]. In particular, hacking a safety-critical control function can
have severe and even fatal consequences. In [178], different attacks and their influence on a
control function are modeled, showing that it is easily possible to tamper with driver assistance
functions if their communication is not secured. Novel techniques are developed to integrate
safety and security, protecting in-vehicle communication networks such as Controller Area Net-
work (CAN) [94] and FlexRay [42]. In the automotive domain, encryption and authentication
for internal buses has to be implemented efficiently, an approach to authentication has been
proposed in [180].

While current state-of-the-art approaches for security in automotive systems consider sep-
arate components, the approach proposed here targets the system-level. Towards the analysis
of systems, model checking has been applied to verify computer networks [140] and proto-
cols [95]. These approaches only detect system vulnerabilities if each single component vulner-
ability is modeled. However, vulnerabilities are often not known at design time and, therefore,
a probabilistic approach, as proposed in [10] for Denial-of-Service (DoS) exploits, can abstract
this uncertainty. In [10] an approach to analyzing security protocols with probabilistic model
checking based on attack cost is proposed. By contrast, we are quantizing the security of all
traffic, based on the underlying automotive architecture, including DoS attacks on protocols.

Contributions. In this chapter, we present Security Analysis for Automotive Networks (SAAN),
a methodology and framework for the security analysis of automotive architectures at the system-
level. We take advantage of the fact that ECU topologies, communication networks and message
streams are known at design time. Using probabilistic model checking enables us to quantify
the security of automotive architectures in terms of confidentiality, integrity and availability.
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In Section 3.3, we outline the framework in SAAN which comprises the following three steps:

1. The considered automotive architecture is transformed into a Markov model.

2. An assessment of components is performed to determine the transition rates for the
Markov model.

3. The definition of a property for the model checker is carried out to determine an appro-
priate security value.

With the complete Markov model and property, a probabilistic model checker determines secu-
rity values for the architecture under consideration.

In Section 3.4, a detailed description of the SAAN methodology and concept is given. We
increase the granularity of an architecture under test to the submodule level by including all
network interfaces, bus systems, ECUs and messages. These submodules are transformed into
a Markov model to transform the architecture into a graph (Section 3.4.1). The edges of the
graph are weighted by probabilistic rates, representing exploitability and patching rates of each
submodule. We propose to determine the rates by a standardized security assessment of every
submodule separately (Section 3.4.2). Using the Markov model with assigned rates, we define
properties to evaluate the architecture (Section 3.4.3). Our framework allows the definition of
properties for any submodule in the architecture, thus enabling us to evaluate every security
aspect relevant while considering influences of the complete architecture.

After the introduction of the concept, the implementation challenges of SAAN are dis-
cussed. In Section 3.5, our implementation of the model synthesis is described. There, we
utilize the knowledge of automotive architectures, as defined in Section 3.4, to reduce the size
of the resulting Markov model. We furthermore detail the subset of property specification, as
required for the analysis of automotive networks (Section 3.6). After the model is synthesized
and the property is defined, the model is analyzed for the property in Section 3.7. There, we re-
iterate the probabilistic model checking basics with a specific focus on the performance impact
of different components.

The results of this analysis for a set of example architectures are presented in Section 3.8.
For three architecture alternatives, we obtain and compare results. We also show the possibility
to explore different exploitability and patching rates for a given architecture. Finally, we discuss
the general applicability and scalability of SAAN before concluding the chapter in Section 3.9.

3.3 Framework

In the following, we give an overview of the SAAN analysis approach. After the problem
description, we explain the main steps of our analysis flow.
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3.3.1 Problem Description

Automotive networks consist of a high number of ECUs that perform dedicated tasks such as
sensing, computation, or actuation. Functions are implemented in a distributed fashion that
requires communication via different shared bus systems like CAN and FlexRay. Particularly,
the communication via shared buses using predefined and often unencrypted message streams
becomes a major issue once the system is compromised.

Generally, components or functions are developed independently in the automotive domain
and are subsequently integrated into the architecture. While security aspects might be consid-
ered for use cases at subsystem-level, vulnerabilities at system-level are often not taken into
account. As a remedy, SAAN is designed to answer the following questions during design and
integration:

• What influence do component vulnerabilities have on the security of a specific function?

• Is a certain architecture design decision beneficial in comparison to an alternative in terms
of security?

• How much effort should be invested in the consideration of security during implementa-
tion of specific components?

Note that we are considering system-level security, abstracting aspects of internal ECU security,
such as secure boot, key storage, etc.

Since automotive architectures are highly heterogeneous systems comprising many different
components, it is mandatory to model all important aspects at the system-level. For instance,
communication systems used in vehicles differ greatly in their support of security aspects, par-
ticularly in terms of availability (see Section 1.3). Thus, appropriate models for these commu-
nication systems are required. ECUs might also be connected to multiple communication buses,
resulting in different potential attack paths with varying probabilities. Finally, to characterize
the security properties of ECUs and other components, it is necessary to quantify the rates at
which they can be exploited and how fast they can, in turn, be patched. For this purpose, se-
curity assessment and Automotive Safety Integrity Level (ASIL) values should be taken into
account when modeling the system.

3.3.2 Analysis Flow

Our security analysis approach for automotive architectures is outlined in Figure 3.2. It com-
prises three steps: Model transformation, component assessment, and property definition. Fi-
nally, the security of an architecture is determined with a probabilistic model checker.

Model Transformation. To be able to process the architecture in terms of security, we break
it down into the relevant components. These include buses, ECUs, messages, interfaces, etc.
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Figure 3.2: Illustration of SAAN: (1) The architecture is transformed to a Markov model, (2) transition
rates are determined by a security assessment per component and (3) a property for the model checker is
defined. Finally, the probabilistic model checker returns quantified results that support decision making
at the system-level.

For each component, a Markov model defines the exploitability and patching rate. Finally, the
Markov models are combined into a single system that enables probabilistic model checking.
Depending on the system under consideration, this transformation can be flexibly extended or
adapted. We propose a specific transformation approach in Section 3.4.1.

Component Assessment. Correspondingly to the transformation of the architecture, it is nec-
essary to assess the individual components in terms of their exploitability and patching rates.
These values determine the transition rates of the Markov model. For exploitability, we pro-
pose to use the Common Vulnerability Scoring System (CVSS) to assess the vulnerability of
components, relying on an established standard [148]. Similar common criteria standards can
be used with adjustments as well. Considering the ASIL values of components, we observe that
patching rates strongly depend on safety requirements of components that might require costly
re-testing and validation in case of software changes. These rates can be adapted by the user,
depending on development processes and existing data. While the assessment should ideally be
performed on subcomponent level, incorporating ECU security elements, we use a simplified
component-based approach. The granularity of SAAN can be scaled up to the required level
(see Section 3.9). The component assessment with CVSS and ASIL is detailed in Section 3.4.2.
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Property Definition. By defining specific properties, we are able to investigate certain aspects
of the architecture in terms of security. In contrast to a steady-state analysis, which analyzes
convergence to a steady state of the system at some point in time, this analysis is significantly
more powerful. Thus, a property can for instance be the cumulated time that a function is
exploitable within a period of 10 years. The definition of appropriate properties is detailed in
Section 3.4.3.

3.4 Methodology

In this Section, we describe the methodology and concepts behind SAAN, allowing security
analysis of architectures with probabilistic model checking. Specifically, the steps required to
synthesize a Markov model from an architecture (Section 3.4.1), the component assessment to
weight the edges of the model (Section 3.4.2), and the definition of properties to analyze the
model (Section 3.4.3) are outlined.

When transforming a model from an architecture, we model ECUs and interfaces by the
number of exploits existing. New exploits are discovered (e.g., by security researchers) with
rate η and exploits are patched (e.g., by Over-The-Air (OTA) updates) with rate ϕ. These values
are determined in the component assessment and will be detailed in Section 3.4.2. Networks
and buses are considered passive, depending on the least secure state of all attached ECUs.
Messages in turn are modeled based on the security principles of confidentiality, integrity and
availability:

• Confidentiality describes the protection from reading messages by an unauthorized entity.

• Integrity describes the protection from creation and modification of messages.

• Availability describes protection from interruption or removal of messages.

Each of the principles is analyzed separately, depending on the protection of the message (none,
cryptographic hash, encryption) and the communication networks employed for transmission.

Example. To illustrate this process, consider a minimal architecture with a telematics ECU
(3G in Figure 3.2) attached to a CAN bus. The CAN bus is used to transmit a message m which
is neither sent nor received by the telematics ECU. After transforming this architecture into a
Markov model, we obtain the model shown in Figure 3.3. This is a very simplified synthesis,
only considering telematics ECU, bus and confidentiality of m. Further, we only consider one
exploit per module.

Analyzing this model, we see that from a secure state (s0), an exploit is discovered in the
telematics unit with rate η3G. Once an exploit is discovered, the CAN bus is immediately
considered to be exploitable (s1). The telematics unit can be patched with rate ϕ3G. If this does
not happen and an exploit for the protection of message m, which the telematics ECU does
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s0 = (0, 0, 0) s1 = (1, 1, 0) s2 = (1, 1, 1)

η3G

ϕ3G ηmc

ϕmc

ϕ3G

Figure 3.3: Illustration of a simplified Markov model that analyzes the exploitability of message m in
the architecture in Fig. 3.1 in terms of confidentiality with nmax = 1. The states are composed by
s = (s3G, sCAN1 , smconf

). Each atomic state si represents how many exploits for the components 3G,
CAN1, and m exist.

not have the keys to, is discovered (with rate ηmc), we advance to state s2 and the message can
be exploited. From now on, the contents of the message m cannot be considered confidential
any longer, as the contents could be read and altered by an attacker. To remedy this situation,
the message protection and the telematics unit should be patched. In our example model this
happens with rates ϕmc and ϕ3G, respectively. Alternatively, the access for attackers can be
denied by patching the telematics unit with rate ϕ3G.

This is a very simplified example, requiring only a small subset of our proposed modeling
techniques. In the following, we will explain the full set of synthesis rules, as well as the
assessment of components and the analysis of the model with probabilistic properties.

3.4.1 Model Transformation

Transformation of an automotive communication architecture into a Markov model is required
to be able to analyze the communication architecture with probabilistic methods. Our trans-
formation considers all communication participants (i.e. ECUs) and interconnections (such as
bus systems and networks). We further separate ECUs into interfaces for every communication
system in order to analyze the impact of different communication systems. Furthermore, we
analyze messages transmitted in the system.

Terminology. To model an architecture for security analysis, we require the set of all ECUs
e ∈ E and all buses b ∈ B. We also require the sets of all interfaces Ie of every ECU e. An
interface ib ∈ Ie connects an ECU e with a bus or an external network b ∈ Be. Thus, we define
an ECU as e = {Ie, Be} and a bus as b = {Eb}, where Eb is the set of ECUs on bus b. To
analyze a message m, the sending ECU sm, the set of receiving ECUs Rm, and the set of buses
Bm over which the message is transmitted, are required: m = {sm, Rm, Bm}. This data is
obtained from the architecture, including the fully scheduled set of messages. The maximum
number of exploits considered for every module at any point in time is defined as nmax. The
relationship x1

ξ−→ x2 describes the change of state x1 to x2 with rate ξ.
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ECUs & Interfaces. To model the architecture, every ECU needs to be split into interfaces.
For each interface ib, the exploitability ε(ib) ≥ 0 is analyzed separately, based on the proba-
bilistic exploitability rate ηib increasing the number of exploits n if the bus is exploitable:

ε(ib) = n
ηib−→ ε(ib) = n+ 1 (3.1)

if ε(b) > 0,with ib ∈ Ie, 0 ≤ n < nmax

The resulting value for exploitability describes the number of parallel exploits ε(e) existing
in the ECU, ε(i) in the interface or ε(m) for the message. We use nmax to limit the maximum
number of exploits and thus reduce the complexity of our model. The inverse of this relationship
defines the patching of a security flaw in an interface ib, based on the patching rate ϕib:

ε(ib) = n+ 1
ϕib−−→ ε(ib) = n (3.2)

if ε(b) > 0,with ib ∈ Ie, 0 ≤ n < nmax

The exploitability of each ECU ε(e) is based on the exploitability of all interfaces of this
ECU:

ε(e) =
∨
i∈Ie

ε(i) (3.3)

Buses & Networks. Similarly, the exploitability ε(bc) of a CAN bus bc is dependent on the
exploitability of every attached ECU:

ε(bc) =
∨
e∈Ebc

ε(e) (3.4)

In case a FlexRay bus bf is used, additionally, the bus guardian ibg needs to be exploited,
before an ECU e can transmit freely on the bus:

ε(bf ) =
∨
e∈Ebf

ε(e) ∧ ε(ibg) (3.5)

Networks or buses directly connected to the Internet, such as 3G, are always considered to
be exploitable, as attackers have continuous access to these. We set a constant exploitability
value of 1 to model this property:

ε(b3G) = 1 (3.6)

Messages. The exploitability of a message is subdivided into the impact categories availabil-
ity A, integrity G and confidentiality C. While availability is highly dependent on the em-
ployed communication system, integrity and confidentiality are based on the message protec-
tion. Specifically, cryptographic hashing and encryption address these categories. When using
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a CAN bus, availability can not be guaranteed if any of the buses used for message transmission
are exploited:

A(m) = ¬
∨
b∈Bm

ε(b) (3.7)

Confidentiality and integrity of a message m can not be guaranteed if the sending or receiv-
ing ECUs are exploited, even if the message is encrypted. To ensure real-time performance, we
assume symmetric encryption, such that the key for message encryption is stored both on the
sending and receiving ECUs. Secure key storage is not analyzed here, but could be integrated
as a submodule into the ECU module. Confidentiality C and integrity G behave similarly, but
depend on the protection mechanisms used for the respective message m. In the remainder of
this section, we show the transformations for confidentiality. The rules apply identically for
message integrity by replacing C(m)/ηC /ϕC in the equations by G(m)/ηG/ϕG.

Confidentiality of a message is violated if the sender or receivers are exploitable:

C(m) = ¬
∨

e∈{sm,Rm}
ε(e) (3.8)

Furthermore, confidentiality can be attacked by any ECU on any of the buses used for transmis-
sion ofm. The probability of such an attack depends on the strength of the employed encryption
algorithm and its implementation. To describe this behavior, we utilize the exploitation rate for
the protection method ηC and define the following relation:

C(m) = 1
ηC−→ C(m) = 0 if

∨
b∈Bm

(ε(b)) = 1 (3.9)

Consequently, a message is not exploitable, if all ECUs on all transmitting networks are not
exploitable.

The inverse of the above operations describes the patching of a flaw in the message encryp-
tion, and is described as:

C(m) = 0
ϕC−→ C(m) = 1 if

∨
b∈Bm

(ε(b)) = 1 (3.10)

This concludes the concept of transformation of the architecture into the states of a Markov
model.

3.4.2 Component Assessment

To be able to analyze the Markov model generated in the previous section, we need to assign
weights to the edges. These rates represent the probability over time that a device is exploitable
and the rate in which a device can be patched.
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Exploitability Rates. In SAAN, we determine rates via an adjusted version of CVSS [148].
CVSS has been developed as an open standard to assess vulnerabilities in software systems and
is maintained by the National Institute of Standards and Technology (NIST). It helps to generate
a score for the security of a component, based on the assessment of units in multiple subscores
and categories. The criteria used in the exploitation subscore are similar to the criteria required
for interfaces in the automotive domain. We utilize the exploitation subscore (see Table 3.1) and
adjust it further to adapt it to the automotive domain. Based on the scores for the subcategories,
we calculate the exploitability score

σ = 20 · AV · AC · Au. (3.11)

Based on the exploitability score σ, we calculate the rate

η = σ − 1.3. (3.12)

We normalize the exploitability rate to 1 year.
As an example, we illustrate the assessment of the 3G interface of the telematics ECU. As

this device is connected to the internet, the Access Vector is across multiple networks (AV = 1).
Due to its open surface, we assume that the device is hardened against attacks by the manufac-
turer, thus the access complexity is high (AC = 0.35). To access the device, we further assume
that multiple authentication steps are required (Au = 0.45). From Equation (3.11), we deter-
mine σ = 3.15. Based on Equation (3.12), the exploitability rate can be determined as η = 1.85.
This means that exploits for the device can be expected to be discovered 1.85 times per year.

In the remainder of the chapter, we use these CVSS-based assessments for the interfaces of
all ECUs.

Patching Rates. The amount and rate in which patches can be supplied to the vehicle is
dependent on many factors. Firstly, the development time for a patch sets an upper bound to
the patching rate. Additionally, the amount of tests required can be extensive, if a safety-related
function needs to be altered to implement the security patch. Thus, we base our assignment
of patching rates on the ASIL level of the functionality to be patched. The ASIL-dependent
patching rates are shown in Table 3.2. While a safety-related device, such as the gateway
(GW) can only be patched at relatively long intervals, non-safety-related functions, such as a
telematics unit (3G), can be patched at short intervals, as fewer tests are required.

Using such transition rates in the Markov model allows us to analyze it on a time basis,
resulting in a Continuous-Time Markov Chain (CTMC).

3.4.3 Property Definition

After creating a CTMC model from the architecture and assigning transition rates as discussed
in the previous subsection, we need to define the goals of our analysis. These goals are defined
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Category Subcategory Value
Description

Access Vector L (Local) 0.395
(AV) Accessible only on device

A (Adjacent Network) 0.646
Accessible via directly attached bus

N (Network) 1
Accessible via any number of networks

Access Complexity H (High) 0.35
(AC) Device is generally secured

M (Medium) 0.61
Device is partially secured

L (Low) 0.71
Device is not secured

Authentication M (Multiple) 0.45
(Au) Multiple authentication steps required

S (Single) 0.56
One authentication step required

N (None) 0.704
No authentication is required

Table 3.1: The categories for the CVSS exploitation subscore and interpretation of these for automotive
networks (adapted from [148]).

ASIL patching rate (ϕ) example function

A weekly (ϕ = 52) Telematics Unit

B monthly (ϕ = 12) Turning Indicator

C bi-monthly (ϕ = 6) Park Assistant

D 3-monthly (ϕ = 4) Central Gateway

Table 3.2: Assignment of patching rates to Automotive Safety Integrity Levels (ASIL). A component with
higher ASIL has a higher impact on safety and thus requires more testing of software changes before an
update can be rolled out.
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as properties of the model. A common property evaluated on CTMC models is a steady-state
analysis. Here, the probabilities to be in each state at any sampled point in time can be calculated
with conventional matrix operations. Consider the example in Figure 3.3. With rates ϕ3G =

ϕmc = 52 (weekly) and η3G = ηmc = 2 (bi-annually), we obtain the transition rate matrix:

Q =

−s0s1 − s0s2 s0s1 s0s2
s1s0 −s1s0 − s1s2 s1s2
s2s0 s2s1 −s2s0 − s2s1

 (3.13)

=

−2 2 0

52 −54 2

52 52 −104

 (3.14)

Note that the values on the diagonal of the matrix are the negative sum of the rates of the row.
The steady-state solution πQ = 0 yields a stationary distribution

π =
(
0.96296 0.036338 0.000699

)
. (3.15)

Consequently, at any given point in time, the probability to be in state s2 wherem is exploitable,
is 0.0699%. This stationary information, however, is not conclusive for practical security ques-
tions. Thus, we are interested, e.g., in the probability that the model reaches state s2 at least once
within one year. To express this for CTMCs, we need to define a reward-based property, count-
ing each occurence of the state. We follow the syntax in [87] and define R{s2} =? [F < 1] for
this example. The properties required in the automotive domain will be detailed in Section 3.6.

3.5 Model Synthesis

After presenting the SAAN methodology for probabilistic model checking of automotive net-
works, the following sections introduce the implementation aspects and challenges. While the
methodology shown above is rather straight-forward, some aspects, such as state space explo-
sion in modeling make implementation challenging. The steps of the process, based on the
methodology above, are described in the following sections.

In this section, we discuss the practical challenges that arise when synthesizing a CTMC
model from an architecture. To better understand these challenges, we explore a small example.
This example describes a minimal system, including a single ECU, connected via interfaces to
a bus, and is depicted in Figure 3.4. Note that we split the interfaces (i ∈ I) into incoming
(g ∈ G) and outgoing (o ∈ O) interfaces to demonstrate the modeling flexibility of SAAN.
There, the data flow from the ECU to the bus through the outgoing interface, as well as the
data flow from the bus through the incoming interface to the ECU, are shown. Furthermore, the
security dependencies and the state, describing the number of exploits are depicted.

In our example in Figure 3.4, each component, except the bus, can have two different states,
secure (0) or exploitable (1). Multiple exploits per device are possible but are omitted in this
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Data Flow
State Dependency

bus

b ϵ{1}

incoming 

interface

g ϵ{0,1}

outgoing

interface

o ϵ{0,1}

ECU

e ϵ{0,1}

Figure 3.4: Minimal working example for a vehicle network, including an ECU and a bus, as well as
the incoming and outgoing interfaces of the ECU. Note that the data flow per path is unidirectional.
Dependencies for security states are given as dashed lines.

example for conciseness. The bus represents an always exploitable component, having only an
exploitable state (1). This represents a cellular connection to the Internet, which inherently does
not provide any security. In our example, the permanently exploitable bus forms the attack path
into the ECU.

The number of exploits of the outgoing interface o, the ECU e and the bus b depend directly
on the number of exploits of the preceding components in the data flow. In case of the incoming
interface g, the state only varies with the exploitation and patching rates ϕ and η, as defined in
Section 3.4.2. The exploitation and patching rates define how often new exploits are found and
how often an exploit can be patched within a given time. The state of the incoming interface
has no direct dependency on its neighbors.

When describing the architecture as above, single components and their dependencies are
described. The CTMC required for model checking, however, is a combination of the states
of all components and interconnections, describing the complete system at all times. When
synthesizing the CTMC from these descriptions, challenges arise as the behavior of a single
component is heavily dependent on the connected components.

Generic Approach. In the following, the synthesis of the CTMC, without consideration of
the behavior of the automotive system as defined in Section 3.4.1, is described. The two ap-
proaches are compared in Figure 3.5. When generating the CTMC for the system with this naive
approach, the model size would result in 23 = 8 states (see Figure 3.6(a)), created through the
combination of all possible substates, the Cartesian product. The bus has no influence on the
number of states, as it has only a single possible state. Transitions between states are determined
based on the exploitation (ϕ) and patching rates (η), as defined for the single components. We
use this as a baseline for comparison with our proposed domain-knowledge approach.
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Figure 3.5: SAAN in relation to a generic probabilistic model checker. SAAN implements a novel au-
tomated model synthesis and property specification. These use domain-knowledge about their input
parameters and are thus more efficient, allowing model synthesis and checking up to three orders of
magnitude faster than existing approaches (tcomp).

(a) with instant transitions:

s0 = (0, 0, 0, 1) s1 = (0, 0, 1, 1)

s2 = (0, 1, 0, 1) s3 = (0, 1, 1, 1)

s4 = (1, 0, 0, 1) s5 = (1, 0, 1, 1)

s6 = (1, 1, 0, 1) s7 = (1, 1, 1, 1)

∞
ηϕ ηϕ

∞

∞ηϕ ∞
ηϕ

∞

∞∞

∞

(b) without instant transitions:

s̃0 = (0, 0, 0, 1) s̃1 = (1, 1, 1, 1)

η

ϕ

Figure 3.6: Generic Markov model with instantaneous transitions (a) and optimized Markov model
without instantaneous transitions (b) generated from the architecture in Figure 3.4. States are defined as
sn = (s(n,1), s(n,2), s(n,3), s(n,4)), with s(n,1) = o being the state of the outgoing interface, s(n,2) = g

the incoming interface, s(n,3) = e the ECU and s(n,4) = b the bus. The rates η and ϕ describe the
exploitability and patchability of the incoming interface.
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Instantaneous Transitions. Note the transitions in Figure 3.6(a). Some component states are
defined to immediately follow others (compare state dependencies in Figure 3.4) but exist as
separate, intermediate states in the model. To connect these intermediate states, infinite rates
(∞) are assigned to the transitions between these states. We refer to these transitions with infi-
nite rates as instantaneous transitions. These transitions only exist to connect the intermediate
states generated through the Cartesian product and do not directly influence the behavior of the
system. To be able to compute the model, these transitions need to be approximated with large
values. The chosen value for approximation has a large impact on the performance of model
checking. We will discuss this impact in more detail in Section 3.7.

SAAN. While the generic approach to model generation is based on the combination of all
components in the system, it is more efficient to operate on the minimal set of states describing
the system. The proposed SAAN follows this efficient approach and uses the knowledge about
the structure, behavior and relationships of components in a vehicle to reduce the model to its
minimal size.

First, the behavior of components in relation to their neighbors is analyzed and defined in
the form of rules. These rules are representing the behavior described in Section 3.4.1. Then,
the states of the model are defined. Based on the Cartesian product of all component states
and utilizing the set of rules, a model reduction is performed to reach the final set of states.
Then, transitions between states are added, leading to the final CTMC model. These steps are
explained in the following.

Rules. Rules define the behavior of components, such as shown in Figure 3.4. This behavior
is formally described as rules in Equations (3.16) to (3.19) for all substates in the system. These
definitions are based on the behavioral analysis in Section 3.4.1 and describe the new substate
of a component depending on its former substate, as well as the states of its neighbors. By
contrast to Section 3.4.1 and to reduce the model size, we do not yet consider the transitions
triggered through exploitation (η) and patching (ϕ), but only instantaneous transitions.

The substate in a new state s′ is defined as c′ ∈ {e′, g′, o′, b′}, depending on the component.
This new substate c′ relies on the previous substate of the component (in case of the incoming
interface) or the previous substate of connected components (in case of all other components), as
depicted in Figure 3.4. An ECU e, e.g., is always a passive component, with its state following
the state of all connected incoming interfaces and the connected buses (Equation (3.16)). The
incoming interface g in turn is not influenced by any connected components (Equation (3.17)).
While the state of the outgoing interface o is based on the state of the ECU (Equation (3.18)),
the state of the bus b is based on the state of all outgoing interfaces (Equation (3.19)).
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ex
′ =
∑
b

(g(b,e)x · b), ex, ex
′ ∈ E (3.16)

g(b,e)x

′
= g(b,e)x , g(b,e)x , g(b,e)x

′ ∈ G (3.17)

o(e,b)x

′
= e, o(e,b)x , o(e,b)x

′ ∈ O (3.18)

bx
′ =
∨
e

o(e,b)x , bx, bx
′ ∈ B (3.19)

While Equation (3.19) describes the general behavior of a bus, as we will use it in the evaluation
in Section 3.8, note that in our minimal example, the bus is always exploitable, as it forms the
attack path: bx′ = bx = 1 (compare Equation (3.6)).

As can be seen from the above rules, the incoming interface is the only component not
instantaneously depending on others. It follows that exploits and patches are applied to this
component with rates η and ϕ. This models the behavior that an attacker can only attack an
ECU through incoming connections. In case of multiple incoming interfaces, multiple attack
paths with a differing number of exploits are possible.

Initial States. Every component contains an initial state. For most components, this should
be the secure state (0). Some components, however, such as a cellular connection, can be
considered to start in an exploitable state (1) or even contain constantly exploitable states, such
as the bus in Figure 3.4. The set of initial states of all components forms the initial state of the
system.

State Reduction. To raise the efficiency of the model checking approach, we apply the rules
defined above to reduce the model to the minimum number of states. The minimal set of states
describing the behavior of the system without instantaneous transitions can be determined by
reducing the set of all states with instantaneous transitions. Equation (3.20) describes the set of
all possible states by creating the Cartesian product of all component states.

S = E ×G×O ×B (3.20)

Based on a single state s ∈ S, a function is required that maps the set of all states to a subset
which contains all states without instantaneous transitions:

f : S → S (3.21)

S ′ = f(S) = {f(s)|s ∈ S}, S ′ ⊆ S (3.22)

For our example, this function can be easily defined over the components in the system:

f(s) = f(o(e,b)x , g(b,e)x , ex, bx) = (o(e,b)x

′
, g(b,e)x

′
, ex
′, bx

′) (3.23)
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The resulting changes for component states can be calculated from the set of rules for all com-
ponents (see Equations (3.16) to (3.19)). Here, the new state is calculated based on the current
states. Note that it needs to be ensured that only unique combinations of component states and
thus unique states s′ are contained in S ′.

Transitions. Once the model reduction is complete and the minimal set of all states has been
found, these states need to be connected via transitions. Adding these transitions is trivial. A
transition from a state s1 to a state s2 is added whenever no more or less than a single transi-
tion exists, which can trigger the state change through exploitation or patching. For example,
between states (0, 0, 0, 1) and (1, 1, 1, 1), only a single component can independently change its
state for the transition to occur, namely the incoming interface g. All other component states
follow the change of i based on the defined rules (see Figure 3.6(b)). The rates for the transitions
are defined as the exploitation rates η and patching rates ϕ of components.

Example. Applying the above mapping function to our example in Figure 3.4, starting from
s0 = (0, 0, 0, 1), a transition of the incoming interface g′ = 1 with η leading to intermediate
state (0, 1, 0, 1) triggers the substate change of the ECU (see Equation (3.16)) e′x = 1, resulting
in intermediate state (0, 1, 1, 1). The transition of the ECU in turn triggers the substate transition
of the outgoing interface (see Equation (3.18)) to o′ = 1, resulting in a state change to s′ = s1 =

(1, 1, 1, 1). As all rules are applied in a single step, the intermediate states are no longer required
in the model (see Figure 3.6(b)).

This concludes the synthesis of model from architecture. In the next section, we specify
properties used to evaluate the model generated here.

3.6 Property Specification

To evaluate the model synthesized in Section 3.5, a property needs to be specified. The model is
then checked for the property by a model checking algorithm. In case of generic approaches, a
large number of diverse properties can be defined. Typically, a language, such as Computation
Tree Logic (CTL), is employed to formalize the description of properties. Properties that can
be verified are very flexible and include, among others, reachability and the time the system
remains in a certain set of states.

For SAAN, we are primarily interested in the time a system, subsystem, component or a
combination of these are exploitable. To determine this, we need to define the analysis time t
and the states of interest ρ̄ as property φ:

φ = {ρ̄, t}. (3.24)

While the definition of time t is straight-forward, the states of interest are defined as the vector
ρ̄. For this, we call the components to be analyzed c ∈ C. As exploitability corresponds to the
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time that a given system remains in a single state or a set of states, we summarize these states
in a vector ρ̄. Vector ρ̄ has the same length as the number of states in the system: |ρ̄| = |S|. For
every substate s(n,c) of components to analyze (see Figure 3.6), the corresponding value in the
vector is set to one, if the substate is exploitable, or else to zero:

ρ̄ = ρ(sn), ∀sn ∈ S (3.25)

ρ(sn) =

{
1, if ∃c ∈ C : s(n,c) > 0

0, else
(3.26)

When analyzing the state of the ECU in our example in Figure 3.6(b) for exploitability (s(1,3)),
this leads to C = {3} and ρ̄ = ( 0

1 ).
In the next section we present the model checking algorithm, verifying the properties of the

model and using the synthesized model and the property specification as input.

3.7 Model Checking

After determining the model to be analyzed in Section 3.5 and specifying a property in Sec-
tion 3.6, in this section, we analyze the model for the specified property φ. The analysis we
apply is based on [86] and will be briefly introduced here.

Here, the focus is on probabilistic model checking for CTMCs. In the following, the ele-
ments required for model checking of CTMCs are reproduced in their adjusted and simplified
forms from [86] (Equations (3.27) through (3.34)). In the process, some elements will be high-
lighted, as these are crucial for a well-performing model checking.

The input to the model checking algorithm is a matrix Q, describing the model, and the
property φ to be checked for. The property φ contains the vector ρ̄, describing the set of states
to be analyzed and the analysis time frame t. The matrixQ describes the transitions by assigning
the rateR(x, y) of the transition at the coordinates (x, y) in the matrix for a transition from state
x to state y. A transition from y to x is noted at (y, x) accordingly. Non-existing transitions
between states have a rate of zero and are set accordingly in Q. Another requirement for the
matrix is that rows sum up to zero. Thus, the value at (x, x) is set to the negative sum of all
items in the row:

Q(x, y) =

{
R(x, y) x 6= y

−∑w 6=xR(x,w) x = y
(3.27)

In the following, we will shortly explore the matrix generation for the generic approach in
Figure 3.6(a) as Qgen and for SAAN as QSAAN . For the exploitation and patching rates, we
define η = ϕ = 2. As described in Section 3.5, infinite transition rates, such as required in
Figure 3.6(a), need to be approximated for the generic approach. In the following, we use a
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value of 10. The resulting matrices for our minimal example from Figure 3.6(a) and (b) are
shown in Equations (3.28) and (3.29), respectively.

Qgen =



−2 0 2 0 0 0 0 0

10 −12 0 2 0 10 0 0

1 0 −11 10 0 0 0 0

0 1 0 −11 0 0 0 10

10 0 0 0 −12 0 2 0

0 0 0 0 10 −12 0 2

0 0 10 0 1 0 −21 10

0 0 0 0 0 1 0 −1


(3.28)

QSAAN =

(−2 2

1 −1

)
(3.29)

The matrix, as representation of the CTMC, is checked over the given time t. To do so, the
process from [86] is applied. First, the matrix Q needs to be normalized. To achieve this, the
matrix Q is divided by q, the maximum of all outgoing transitions of a state. This value can be
found as the absolute maximum of all values in Q:

arg max
x
{q = |Q(x, x)|}. (3.30)

As the application here always contains positive rates, q ≤ 0 does not need to be considered.
Following Definition 12 in [86], the resulting matrix P unif = I + Q

q
, where I is the identity

matrix, represents the uniformized Discrete Time Markov Chain (DTMC) embedded in our
analyzed CTMC. As P unif considers all transition rates in a single time step, (P unif)m considers
all transition rates between states within m time steps.

To model the transitions, exponential distributions are assumed in CTMCs To model this
exponential behavior, a Poisson distribution (γ) is employed in every step. The parameters for
the distribution are set to λ = q · t and k = m, thus modeling the distribution of rates with
q, triggering m times within t. The cumulative Poisson probabilities are required to model the
exponential behavior.

This allows us to calculate the transition matrix over time t:

Πt =
∞∑
m=0

γm,q·t · (P unif)
m (3.31)

This however, does not yet allow the direct knowledge of the probability of a single state
after time t. Thus, vector ρ is created to select the states of interest by setting the corresponding
value of the vector to 1. Following Proposition 4 in [86] yields

Πt =
∞∑
m=0

γm,q·t · (P unif)
m · ρ (3.32)
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with

γm,q·t =
1

q
· (1−

m∑
j=m

γj,q·t) (3.33)

The expected value is finally defined to be:

Et =
∞∑
m=0

1

q
· (1− γm,q·t) · (P unif)

m · ρ (3.34)

In the following, we will briefly discuss the performance implications of this computation.

Performance Implications. While the computation in Equation (3.34) is defined as an infinite
sum, in reality, this computation will have to be bounded. Typically, the algorithm in [35] is
used to determine the minimum and maximum number of iterations required to achieve a set
accuracy. There, the number of iterations is defined as linearly proportional to q · t for large
q · t. If existing, instantaneous transitions, by definition, form the largest rates in the system.
This leads to a larger number of iterations in Equation (3.34) and thus longer computation
times. This dependency clearly shows the influence of large approximations for instantaneous
transitions on the computation time of the model checking algorithm. Thus, q should be kept as
small as possible.

Furthermore, too large approximations for instantaneous transitions can lead to a stiff model,
when the smallest and largest rate in the system differ too much, in our setup around 7 orders
of magnitude or more. Too small approximations, however, result in inaccurate results, as they
do not represent reality accurately. In any case, instantaneous transitions will lead to a larger q,
slowing down model checking. Our proposed SAAN eliminates instantaneous transitions and
consequently improves model checking efficiency.

Model Size. The generic approach results in significantly larger models than the domain-
specific approach, as shown in Equations (3.28) and (3.29), respectively. Analyzing larger
models increases analysis time, as the matrix multiplication in Equation (3.34) takes signifi-
cantly longer. Removing instantaneous transitions reduces the model size, thus minimizing the
computations required for model analysis. This will be analyzed in Section 3.8.3.

3.8 Experimental Results

In this section, we discuss our experimental setup and show the potential of our analysis method-
ology by applying the framework to a case study based on the three architectures illustrated in
Figure 3.7. The analysis of the architectures, modeled with the methodology introduced in
Section 3.4, is performed with the probabilistic model checking tool PRISM [87].

The computations for one property in the architectures and with nmax = 2 require between
15 minutes and 1.5 hours on a conventional desktop computer with an Intel Xeon quad-core
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Figure 3.7: Three architectures used to compare different approaches to security. Architecture 1 trans-
mits message m on the same bus as the telematics unit is located. Architecture 2 adds a dedicated
connection for message m. Architecture 3 introduces a FlexRay bus for the transmission of message m.

processor at 3.2 GHz. Every PRISM computation runs as a single process with negligible mem-
ory usage. The runtime correlates with the number of states in the generated Markov model.
The models for our example architectures in Figure 3.7 have between 400,000 and 1.2 million
states. All results are given as the percentage of time the message m is exploitable within 1
year.

3.8.1 Architecture Evaluation

We evaluate three different architectures that are based on real-world systems. We only consider
a relevant subsystem of the complete vehicle architecture as illustrated in Figure 3.7. The
considered architectures comprise two bus systems connected by a gateway, a telematics unit,
and an automatic parking assistance application, including 2 ECUs. The automatic parking
assistant has been reduced to one message stream transmitted between the parking assistant
controller and the power steering of the vehicle.

Architectures and Component Assessment. Architecture 1 resembles the example in Fig-
ure 3.1. Since it is assumed that the security of this system is not optimal, we also consider
two alternative architectures. In Architecture 2, the message stream m is sent via an additional
connection directly on CAN2, avoiding an exposure of the stream on the bus that is directly con-
nected to the telematics unit. In Architecture 3, we replace the CAN bus with a time-triggered
FlexRay bus where a schedule is defined at design time with a fixed assignment of slots to
devices.

The exploitation and patching rates for our examples can be found in Table 3.3. We assume
that critical ECUs, such as the gateway and the telematics unit, are hardened against attacks.
The exploitation rate of message m depends on the security features used. We consider three
variants: Unencrypted, Cipher-based Message Authentication Code (CMAC) with 128 bit key
and Advanced Encryption Standard (AES) with 128 bit key. While an unencrypted message is
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Module Interface η (CVSS v2 Vector) ϕ (ASIL)

Park Assistant (PA) CAN1/CAN2/FR 1.2 (AV:A/AC:H/Au:S) 12 (C)

Power Steering (PS) CAN2 1.2 (AV:A/AC:H/Au:S) 4 (D)

Gateway (GW) CAN1/CAN2/FR 1.2 (AV:A/AC:H/Au:S) 4 (D)

Telematics (3G) CAN1/FR 3.8 (AV:A/AC:L/Au:S) 52 (A)
3G 1.9 (AV:N/AC:H/Au:M) 52 (A)

FlexRay Bus Guardian (BG) local 0.2 (AV:L/AC:H/Au:S) 4 (D)

Message (m) unencrypted ∞ (instant) -
integrity CMAC128 1.2 (AV:A/AC:H/Au:S) -

AES128 1.2 (AV:A/AC:H/Au:S) -

Message (m) unencrypted ∞ (instant) -
confidentiality CMAC128 ∞ (instant) -

AES128 1.2 (AV:A/AC:H/Au:S) -

Table 3.3: Results of the security assessment for exploitation rates and patching rates. Devices such as
gateway, telematics unit and FlexRay Bus Guardian are specifically hardened against attacks. Message
assessment depends on the mode to be evaluated (integrity, confidentiality). Message availability is
addressed through the underlying bus system.

instantly exploitable, a CMAC protected message provides integrity, while an AES protected
message can ensure confidentiality.

The patching rates for all devices are based on the ASIL evaluation. The resulting values
are listed in Table 3.3.

Results. The results of our analysis are illustrated in Figure 3.8. It can be observed that
cryptographic hashing with CMAC 128 only improves security in terms of integrity while en-
cryption with AES 128 is effective for integrity and confidentiality. This validates our results
as cryptographic hashing only prevents creation of messages while encryption also prevents
reading.

In general it can be observed that neither cryptographic hashing nor encryption improves the
security values significantly. This is a counter-intuitive result that can be explained as follows:
By hacking the Park Assist (PA), the cryptographic hashing and encryption, respectively, are
compromised and lose their effectiveness. Particularly the relatively low patching rate of the
PA due to its ASIL values results in a high exploitability of the device.

It can further be observed that Architecture 2 does not improve the security significantly
in comparison with Architecture 1 and in some cases it even becomes worse. Here, the low
patching rates of the PA and the Gateway (GW) lead to high exploitabilities of these devices,
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Figure 3.8: Results of the analysis of the architectures shown in Figure 3.7. We analyze message m
in terms of Confidentiality, Integrity and Availability for different protection mechanisms (unencrypted,
CMAC 128, AES 128) across all three architectures. Results clearly show less exploitation potential for
better encryption and more carefully designed architectures. In terms of availability, support from the
bus system is required to ensure reasonable security.

resulting in an exposed CAN2. At the same time, the PA in Architecture 2 is exposed to two
buses resulting in higher exploitability. Connecting the PA to CAN2 might even result in further
security issues as the device might be exploited as a bridge to attack other functions. This
would result in a significantly worse security value for Architecture 2 for functions that are
implemented on CAN2 only.

In FlexRay, the existing bandwidth is divided in a time-triggered manner. Devices can only
transmit in their slot and are denied by the bus guardian to transmit in other slots. This safety
measure also has a significant security impact as devices can not maliciously transmit messages
in other timeslots. This leads to an overall reduction of the attack surface as devices which are
part of the communication or the bus guardian need to be infiltrated to attack message m.

3.8.2 Parameter Exploration

To evaluate the effect of different exploitability rates and patching rates, we analyze the sensitiv-
ity of the exploitability of message m in Architecture 1 to these rates for the entrance point ECU
3G. As the 3G ECU is the entrance point to the architecture, the exploitation rate of message
m heavily depends on the exploitation and patching rates for the 3G ECU. We independently
analyze exploitation and patching rates between once per decade (η3G = ϕ3G = 0.1) and once
per hour (η3G = ϕ3G = 8760). When varying the exploitation rate, the patching rate is set to
ϕ3G = 52; when varying the patching rate, the exploitation rate is set to η3G = 1.9. The re-
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Figure 3.9: Exploration of parameters to evaluate influence on complete architecture security. In (a),
the patching rate of the entrance point is varied, while in (b), different strengths of security are employed
in the telematics ECU forming the start point to a vehicle attack.

sults are shown in Figure 3.9. They exhibit exponential behavior. Hence, we can conclude that
while changes at the lower end of the exploitation resistance/patching spectrum have a rather
large impact on the system, higher rates do not significantly help optimize security. Assuming a
threshold of 0.5% exploitability, a reasonable patching rate for an internet-connected ECU with-
out other access methods would be around ϕ = 6 (every 2 months). In case the exploitation
rate is reduced by further securing the device, an exploitation rate of maximum η = 12 (once a
month) needs to be guaranteed to keep exploitability under 0.5%. Patching rates of η = 12 are
common also in other domains, such as consumer electronics and software.

Such an analysis can be performed for every element in the architecture. Thus, depending
on the architecture, devices can either be hardened against attacks or patching rates can be
contractually agreed upon between the Original Equipment Manufacturer (OEM) and suppliers.

3.8.3 Scalability

To evaluate our approach for scalability, we generate multiple architectures of different sizes
and verify these with SAAN and its model reduction as defined in Section 3.5. For comparison,
we input the same architectures into a generic probabilistic model checking tool, in our case
PRISM. All calculations have been performed on a workstation with Intel Xeon E5-1620 at
3.60GHz and 32GB RAM.

The evaluation starts from a single bus with two connected ECUs. The ECUs have been
modeled with interfaces as shown in Figure 3.4. For our measurements, we increase the number
of ECUs in this basic system. All ECUs are connected to the same bus. The evaluation is
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stopped as soon as the framework under test (SAAN, PRISM) reaches the timeout of one hour.
The property to be checked is defined as the time the outgoing interface of the first ECU is
exploitable.

The results are shown in Figure 3.10 on a logarithmic scale. It is clearly visible that SAAN
outperforms PRISM in terms of computation time in all test cases by two to three orders of
magnitude. Furthermore, the matrix size is up to five orders of magnitude smaller in SAAN
than in PRISM. Some of the computation time advantages gained through the smaller matrix
size in SAAN are absorbed by the more complex computations required for model synthesis,
thus leading to a speed-up of two to three orders of magnitude for the five orders of magnitude
in matrix size.

While PRISM reaches the set timeout of one hour after only 6 additional ECUs, SAAN
manages to encompass 10 additional ECUs in the system. Thus, SAAN is able to operate on
complete functional clusters. Note that the matrix size in SAAN reaches the same orders of
magnitude PRISM requires for one additional ECU only when adding nine ECUs.

Note that the property to be evaluated and the automotive architecture chosen have an impact
on the computation time. The influence of the selected property φ to evaluate is two-fold. On the
one hand, the selection vector ρ̄ is a simple vector multiplication and has minimal influence on
the computation time. On the other hand, φ contains the time t to analyze. This has significant
influence on the number of iterations and thus the computation time. An increasing analysis
time increases the number of iterations and thus the computation time. This holds for both
approaches and increases the performance gap further, as the time for one iteration is highly
dependent on the matrix multiplication (P unif)

i and thus, the number of states. However, the
number of iterations is also proportional to the largest transition in the system (see Section 3.7).
Thus, even for small t, the instantaneous transitions in the generic approach will lead to longer
computations times than in SAAN.

The chosen architecture further impacts the computation time, as larger architectures offer
a larger potential for state space reduction. Typically, states can be reduced for every compo-
nent in the system, thus the model size is growing more rapidly in the generic approach than
in SAAN. However, even for small architectures, such as with three ECUs and one bus, the
computation time advantage is two orders of magnitude, as shown in Figure 3.10.

In summary, the domain-specific approach targeted to the automotive domain allows a per-
formance increase of multiple orders of magnitude over generic solutions for identical architec-
ture input. This enables the designed to verify the security of complete functional clusters with
up to 12 ECUs.

3.9 Concluding Remarks and Future Work

In this work we have proposed a methodology for security analysis of automotive communica-
tion architectures. By analyzing the system-level architecture at design-time, we can quantify
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Figure 3.10: Comparison of synthesized model size and computation time of a generic model checker
(PRISM) with SAAN. Computation time includes model synthesis and checking. Lower values are better.
SAAN clearly outperforms PRISM in both computation time and matrix size.

the security of every element in terms of confidentiality, integrity and availability. The results of
this analysis can help in design decisions for the overall architecture and the security capabilities
of components. For the first time, the impact of individual components on the overall security
of an architecture can be determined. We analyze an architecture by generating a corresponding
Markov model. Edge weights are determined through a security assessment of components. We
define security properties and analyze these over the model with a probabilistic model checker.
The results show that this method can be used to find security flaws in architectures, which
cannot be identified at the component or subsystem level. Implementation challenges, such as
scalability and performance issues have been addressed by the implementation of a model re-
duction in the synthesis and a targeted model checker for application of automotive networks.
We introduce a set of rules, describing the security dependencies in existing networks. With
this, we are able to decrease model sizes by up to five orders of magnitude and computational
time for model synthesis and checking by up to three orders of magnitude.

Future work will seek to improve performance further. With this, we will be capable of
analyzing more fine grained models and more complex systems, e.g., comprising Ethernet.
Furthermore, we will be able to generate a set of best practices for automotive architectures,
based on our security analysis. A combination of security and reliability analysis, as well as
the integration of ECU internal security measures is planned. Additionally, we will employ the
SAAN framework as evaluation basis to optimize vehicle networks based on security.



4
Lightweight Authentication Framework

4.1 Problem Description and Summary

The rapidly increasing connectedness of modern cars leads to new challenges in the security of
inter- and intra-vehicle communication. As increasing numbers of vehicles are being connected
to the outside world, the exposure risk of safety-critical systems rises significantly. With the
multitude of communication interfaces, it is very difficult, or even impossible, to reliably con-
trol all entry points into the vehicle or shield the vehicular network with firewalls. Hence, it is
important that, besides the external access points, communication within a vehicle is secured.
This does not only hold if the external protections are breached, but also for targeted attacks,
e.g., via the internal On-Board Diagnosis (OBD) port, the infotainment system or the telemat-
ics unit. With the introduction of networked comfort and entertainment functions, as well as
Advanced Driver Assistance Systems (ADASs), vehicles are more readily connected to exter-
nal networks, such as car-to-x networks and the Internet. This trend towards interconnectivity
continues in the vehicle interior. Increasingly, passengers and drivers connect smartphones and
other mobile devices to the vehicle and perform comfort and control functions, such as music
streaming, phone access, but also vehicle related functions, such as control of air-conditioning
and the vehicle locks. This increase in interconnections also raises the attack surface of the
vehicle. This holds especially for the integration of vehicles in car-to-x networks. In these net-
works, safety-critical data is transmitted, allowing deep insights into the state of a car and high
influence on other cars. The impact of a malicious attack on automotive safety-critical systems
can be devastating, including high financial damages and even loss of life. To mitigate the ef-
fects of such attacks, protection mechanisms have been developed to limit unauthorized access
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to in-vehicle communication and minimize the number of attack vectors [114, 39, 173, 177]. To
allow real-time behavior, these protection mechanisms are based on symmetric cryptography,
requiring pre-shared keys. Pre-programming these keys opens another attack vector, especially
if the same keys are used throughout the lifetime of a vehicle and across multiple vehicles.
Thus, it is necessary to generate and exchange keys at runtime. Only by using dynamic keys
and limiting the duration of key validity, can secure in-vehicle communication be provided.

Security. It is to be noted that no security mechanism can be considered 100% secure. Secu-
rity is highly dependent on the capabilities (computational, knowledge) of an attacker, which
typically develop over time. However, the security of a concept, such as a protocol, at the time
of development can be formally verified. This ensures that the protocol is free of flaws that
allow circumvention. Formal verification of the proposed protocols is presented in this work.

The level of security of any measure further depends on the algorithms and parameters
chosen for protection. The algorithms are typically either of symmetric (with pre-shared key)
or asymmetric (without pre-shared key) type. The parameters depend on the algorithms and
include for almost all algorithms the length of the encryption key, as well as for some algorithms
the chosen encryption basis, e.g., the exponent in case of RSA or the parameters for the selected
curve in Elliptic Curve Cryptography (ECC).

Typically, security is analyzed across the metrics of confidentiality, integrity, and availabil-
ity. In terms of network communication, confidentiality describes the security of a message
against being read by an attacker. Integrity describes protection against creation or alteration
of messages, and availability describes the security against interruption of messages. In this
work, we seek to enable the protection of all three aspects through a secure key exchange, al-
lowing the distribution of keys to Electronic Control Units (ECUs), which in turn are enabled to
encrypt their messages, thus adhering to confidentiality and integrity. At the same time, the au-
thentication of ECUs and authorization of message streams helps to ensure that only legitimate
ECUs can participate in the communication and perpetrators are easier to detect, thus enabling
simplified enforcement of availability.

LASAN. The structure of the proposed Lightweight Authentication for Secure Automotive
Networks (LASAN) is shown in Figure 4.1. It consists of the core protocol concepts presented
in Section 4.3. It is optimized for the message distribution and architectures in the automotive
context, specifically fixed networks and multicast messages. LASAN further includes the proto-
cols and procedures to be integrated with the automotive life cycle, making it a usable protocol.
These considerations are detailed in Section 4.4. This enables necessary features required for
the application of the protocol to real-world scenarios, such as the exchange of ECUs. LASAN
is verifiable for security and can be evaluated regarding its real-time capabilities.
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Figure 4.1: The Lightweight Authentication for Secure Automotive Networks (LASAN) consists of the
protocols, as well as the protocols and processes required to integrate these authentication protocols
into automotive scenarios. We verify and evaluate LASAN for security and performance to show its
superior qualities over existing protocols.

4.1.1 Challenges and Opportunities

In automotive networks, the primary focus is on real-time capabilities to support control sys-
tems, which need to respond within a given short time, so predictability and reliability are the
dominating factors. At the same time, ECUs have significantly less computational resources
than modern computer systems and automotive networks have significantly lower data rates
than their consumer counterparts. Maintaining predictability with low-powered ECUs and low
data rates while adding security is challenging since many existing security approaches assume
greater computational capacity or higher bandwidth than is available. To overcome this chal-
lenge, we divide the required security actions into two groups: those that are time-critical for the
vehicle’s operation, and those that can be performed asynchronously without affecting security
properties. This allows the system to achieve the required real-time performance and maintain
the desired level of security (see Section 4.3).

A further challenge for security in automotive use cases is that connectivity may be inter-
mittent. While cars are increasingly interconnected, this access is not available to all ECUs
in the network. This is of course a security measure in itself, to shield ECUs from potential
attacks. To overcome this challenge, we use asymmetric cryptography and certificates to allow
components to make security decisions without requiring connectivity to external parties (see
Section 4.4).

Lastly, messages in automotive networks are typically multicast or broadcast messages,
reaching many or all receivers at the same time. This behavior is not typical for consumer
networks and thus, there is only limited support in existing security protocols. We enhance
existing protocols with the ability to authorize messages for multiple receivers, through the
introduction of a root of trust in the network, the security module (see Section 4.3).
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Further, it is important to note that automotive networks are defined at design time and typ-
ically do not change over the lifetime of a vehicle. We utilize this fact by reducing flexibility in
the security framework, based on the reasonable assumption that all devices run the same ver-
sion of our proposed security framework. Reducing flexibility and focusing on a static network
allows us to reduce message sizes significantly. As encryption/decryption and transmission of
the initial messages take large amounts of time, this reduction leads to a system with much
lower latencies (see Section 4.7).

In the following, we describe in detail how we address these challenges and exploit the
opportunities for a secure and lightweight authentication framework.

4.1.2 Contributions

In this work we analyze the design aspects required for security in automotive networks at the
system level. As the security of any system is highly dependent on the implementation and
interaction with other components, it is indispensable to integrate the security components well
with the overall system. We demonstrate how the authentication protocols can facilitate this
integration. We further verify and evaluate the framework to prove its security and real-time
capabilities, required in the automotive domain.

1. We developed the protocols of the LASAN required to securely authenticate and authorize
devices and messages (Section 4.3). We further show the full integration into the auto-
motive life cycle (Section 4.4), thus, e.g., enabling secure exchange of ECUs. To the best
of our knowledge, LASAN is the only published protocol shown to be fully compatible
with current automotive processes.

2. We analyze the security properties of the proposed protocols using established proto-
col verification techniques. Specifically, we model and analyze the protocols using the
Scyther tool [18] (Section 4.5).

3. We have built a discrete event simulator for automotive networks (see Section 4.6) and we
use it to analyze the latencies and bandwidth requirements of LASAN with respect to the
real-time constraints of this domain (Section 4.7). This simulator is further used to quan-
tify the performance of LASAN in comparison to two existing authentication frameworks,
Transport Layer Security (TLS) and Timed Efficient Stream Loss-Tolerant Authentication
(TESLA).

4.2 Related Work

To reduce the risk from pre-shared keys, authentication frameworks have been developed in
other domains, such as corporate networks and the Internet, allowing the exchange of keys
without prior interaction of the communication participants.
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Kerberos and TLS. Examples include Kerberos [119] and the widely used Secure Sockets
Layer (SSL)/TLS framework [23]. Kerberos can be extended to a two-phase system to initial-
ize the system with public-key mechanisms [184]. These mechanisms have been designed for
use in computer networks and have significant overheads, preventing their efficient use in real-
time systems. They allow the exchange of keys without prior knowledge of the communication
participants by adding an element of trust in the network. This can be a trusted server on the In-
ternet or a specially secured ECU in vehicle networks. However, as we will show, the real-time
performance of such mechanisms, as well as their fundamentally different orientation towards
Internet communications makes these frameworks unsuitable for the automotive domain (see
Section 4.7).

TESLA. The TESLA system has been designed specifically for low-performance communi-
cation systems [133]. In TESLA, the sender generates a new symmetric key and computes the
Message Authentication Codes (MACs) for one or more messages. After the messages have
been received, the sender broadcasts the key on the bus, allowing every recipient to authenti-
cate the sender of the previous message. The communication overhead of TESLA is minimal,
especially since the keys are sent alongside the data of the next message. However, the unavoid-
able time delay between receiving and authenticating a message limits TESLA’s applicability
in real-time systems. Groza et al. [39] argue that this delay is too large for intra-vehicle com-
munication scenarios. Furthermore, TESLA only supports limited receiver authentication in
communication systems without sender identifiers, and does not provide stream authorization
or encryption.

LiBra-CAN. For the automotive domain, LiBra-CAN is presented in [39]. It authenticates
senders at the receiving ECUs via Mixed Message Authentication Codess (M-MACs). Keys are
assigned to groups of ECUs. LiBra-CAN requires pre-shared keys and does not concern itself
with key exchanges.

CANAuth. In [173], CANAuth, a very lightweight authentication mechanism, is proposed.
CANAuth allows broadcast authentication and keys are assigned for message groups. Similar
to LiBra-CAN, CANAuth requires pre-shared keys, before authentication can be performed for
message groups.

VeCure. More recently, VeCure has been proposed in [177]. VeCure splits ECUs into classes
based on trust and assigns keys to these classes. However, VeCure also relies on pre-programmed
keys and proposes to program these at the initial setup of the vehicle.

Most frameworks in literature rely on pre-programmed keys. However, such approaches are
not realistic, sufficient or effective. The secure generation and the programming of keys is not
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discussed and not a trivial problem. Additionally, due to the long lifetime of vehicles, keys must
be renewed regularly, to avoid attacks. Further, the exchange of ECUs in workshop situations is
difficult or even impossible. Thus, the integration aspects are not considered here, making the
protocols unsuitable for real-world applications.

Simulators. In literature, several simulators have been proposed for network analysis. The
OPNET Modeler [141] is a modular simulation framework that enables protocol and network
design for various scenarios, including CAN bus simulations [43]. The temporal behavior of
automotive networks, including end-to-end latencies and data throughput, can be analyzed at
the bit-level with OPNET. This is ideal for analyzing short sequences of network transmissions
with high accuracy. However, longer-term network analysis, such as the setup of a secure
communication architecture in a vehicle, is precluded by its performance limits. Thus, in this
work, we focus on simulation on the message-level, while taking specified bit timings into
account.

NS-2 [78] is a discrete-event simulator that implements numerous network protocols and
is able to simulate traffic or routing in networks. It can be extended by user-defined protocol
implementations and run various network architectures. Currently, no established support for
automotive use cases and protocols exists and such architectures would need to be implemented
from scratch, with effort close to that required to design In-Vehicle Network Simulator (IVNS).

OMNeT++ is an open-source discrete event simulation framework that provides tools to
write and run simulations for any type of network [174]. It enables large-scale simulations,
visualization of message flows, and can be extended with user-defined protocols and architec-
tures. Internal automotive networks such as CAN or Ethernet can be analyzed and implemented
by this framework [102]. However, implementing our proposed model into the rigid framework
of OMNeT++, especially including the parametrization of the components, is cumbersome.
Database lookups, as well as filtering, formatting, and exporting of results create additional
hurdles. Thus, implementation in OMNeT++ would exceed the effort of implementing the
model in a new environment. Once our model and approach are implemented, these can be
combined into an OMNeT++ library in future work.

Other commercially available simulators are Timing Architects’ Simulator [167], Symta Vi-
sion’s SymTA/S & Trace Analyzer [163], and Inchron’s ChronSIM [50]. While [167] is focused
exclusively on the simulation of multi-core systems, [163] and [50] also support the simulation
of networks. However, while these tools offer many interfaces for integration with existing
workflows in the automotive industry, the libraries for simulating components and protocols are
limited to those supplied by the manufacturer, and cannot easily be extended to enable proto-
typing of security measures. Neither offers security protocols.

Hardware Support. As an alternative to the hardware co-processors for encryption shown in
Section 1.6.3, other approaches have integrated support for security functions into the network
controller. An approach for this integration of encryption into standard network controllers
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has been proposed in [153]. There the implementation has been shown to have no impact on
the communication latency. A fully featured implementation with symmetric cryptography and
protocol obfuscation has been shown in [154]. These approaches rely on network controllers
with additional functionality, implemented on Field Programmable Gate Arrays (FPGAs). Such
an approach can augment the presented mechanisms, but is only suitable for large ECUs, which
can integrate an FPGA.

4.3 Authentication & Authorization

In this section, we introduce the ECU authentication (Section 4.3.2) and stream authorization
(Section 4.3.3) approaches in detail.

4.3.1 Terminology

The following terminology is used to describe the framework. We denote an ECU as e, sending
a set of streams Se to a set of receiving ECUs Re. In turn, a stream s ∈ Se is identified
by the sending ECU e, a set of receiving ECUs Rs and a set of message instances Ms: s =

(e, Rs,Ms). A message instance m ∈ Ms is assigned to a stream s and carries a payload o.
The security module of the system is denoted as y. A timestamp on device d is denoted as
ωd and a random number as ρ. A nonce n is a unique random number ρ within the accuracy
of one timestamp. Together, a timestamp and nonce shall be unique over the lifetime of the
vehicle, while minimizing the storage required for nonces. A key is denoted as k and identified
by its value v and its length l. We further define a hashing function for message m on device
d as hd(m). A parameter to determine if the system is running is defined as θ ∈ {0, 1} and a
function α(e, s) ∈ {0, 1} determines if an ECU e has access to the stream s (1) or not (0). The
time required to execute a function x is defined as τx. An action z is triggered, if a condition i
is fulfilled: i→ z.

4.3.2 ECU Authentication

The key exchange used for ECU keys is based on the Public Key Cryptography for Initial
Authentication in Kerberos (PKINIT) protocol for Kerberos. PKINIT has been chosen for its
conciseness. This reduces the required time and bandwidth for the authentication. The ECU
authentication is illustrated in Figure 4.2 and described in the following. This mechanism fa-
cilitates the initial key exchange between the ECU and the security module, and is based on
asymmetric cryptography. Secure asymmetric cryptography is generally a computationally ex-
pensive task. This holds especially for software implementations without hardware support,
as will be the case on most ECUs. Thus, this ECU authentication needs to be executed when
the vehicle is not in use as not to interfere with the real-time capabilities of the system (see
Section 4.4).
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(1b+1c) ECU Authentication: mr/mc

(2.1a + 2.1b) Stream Authorization s1: mq1/mg1

(2.2b) Stream Authorization s2: mg2

(3.1) send 

stream: s1

(3.2) receive 

stream: s2

ECU e

(1a) Advertise:

ma

Security 

Module y

ECU Authentication (asymmetric, slow)

Stream Authorization (symmetric, fast)

Stream

Figure 4.2: In our framework, every ECU is authenticated against the security module (1a-1c). Subse-
quently, the ECU can request the keys for a message stream (2.1a-2.1b) and start transmitting (3.1). If
the ECU is to start receiving a message stream, it is notified by the security module with the message
stream key (2.2b) before it receives the stream (3.2).

Authentication Mechanism. To describe ECU authentication, we define a set of keys for
device d, consisting of a public key kd,pub and a private key kd,priv. We further define an asym-
metric encryption function εa for device d, that translates clear text t into cipher text c with key
k, such that c = εad(t, k). Accordingly, we define an asymmetric decryption function δa for
device d, that translates cipher text c into clear text t with key k, such that t = δad(c, k). For
authentication, we further require the certificate fd for device d and a function φd1(fd2) = {0, 1}
to verify the certificate fd2 on device d1.

As shown in Figure 4.2, three steps are required to authenticate an ECU. First, the security
module needs to make itself known and authenticate to all ECUs. Second, each ECU authenti-
cates to the security module and requests a symmetric key. Third, the security module permits
the requesting ECU to access the bus by sending a confirmation message to this ECU. These
steps are described in the following:

(a) Advertisement by the security module (Figure 4.2 (1a)): The security module y advertises
its certificate to every ECU on the bus at startup with message ma. This certificate is
required to be signed by the appropriate Certificate Authority (CA) (see Section 4.4.1).

θ → ma with ma ∈Ma
s , s = (y, {e},Ma

s ), o = fy (4.1)

The authentication begins with the security module y presenting its security certificate fy
to ECU e. This certificate includes the security module’s public key, and is broadcast on
the network unencrypted. Each ECU has a list of trusted CAs, which it uses to verify the
signature on the security module’s certificate. This list of trusted CAs can be updated by
the manufacturer using the remote software update procedure (see Section 4.4.5).



4.3. Authentication & Authorization 83

(b) Registration of the ECU (Figure 4.2 (1b)): Once the security module has been successfully
authenticated (φe(fy) = 1), the ECU transmits its registration message mr, including its
own certificate fe and the newly generated ECU key ke,sym. The key, a timestamp ωe and a
nonce n are encrypted with the public key of the security module ky,pub and can thus only
be decrypted by the security module. The certificate fe contains the ECU’s identity and
public key, as well as any manufacturer-defined properties of the ECU (e.g. type of ECU,
current software version):

φe(fy)→ mr (4.2)

with mr ∈M r
s , s = (e, {y},M r

s ),

o = (εae((e, y, ke,sym, n, ωe), ky,pub), εae(h(e, y, ke,sym, n, ωe), ke,priv), fe)

Note the term εae(h(e, y, ke,sym, n, ωe), ke,priv). Though computationally expensive, this sig-
nature is required to securely identify the sender of the message.

(c) Confirmation of the security module (Figure 4.2 (1c)): Upon receiving the registration mes-
sage, the security module authenticates the ECU by decrypting the received hash from mr

and comparing it to the hash of the received elements. The elements have been received
separately in mr and need to be decrypted with the private key of the security module
ky,priv. Additionally, the certificate of the sender is verified and, in the case of successful
verification (φy(fe) = 1), the security module saves the ECU key, the ECU identity, and
any manufacturer-defined information. The security module then sends a confirmation mes-
sage mc to the ECU. This message contains the ECU identifier encrypted with the newly
exchanged symmetric ECU key:

δay(ε
a
e(h(y,ke,sym, n, ωe), ke,priv), ke,pub) = h(y, ke,sym, n, ωe)) ∧ φy(fe)→ mc (4.3)

with mc ∈M c
s , s = (y, {e},M c

s ), o = (e, y, εsy((e, n, ωy), ke,sym))

In addition to the certificate and signature verification steps described above, the validity of all
timestamps is checked for every message.

In order to transmit messages via an encrypted channel, the ECU must request a stream key
from the security module. This is handled via the stream authorization protocol, as described in
the following.

4.3.3 Stream Authorization

After an ECU has authenticated itself to the security module and established a symmetric ECU
key, the ECUs can request initiations of message streams. All message streams and stream keys
in the system are managed by the security module. Each message stream uses a unique (within
the network) stream key, which the sending and receiving ECUs request from the security mod-
ule. By centralizing ECU authentication and stream authorization at the security module, our
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framework eliminates the need for the sending and receiving ECUs to authenticate each other.
This reduces the number of messages and in turn latency in the protocol. The stream setup can
be performed when a message stream is required, or, if the real-time requirements are more
stringent than the stream setup time, considerably in advance (e.g. at vehicle start-up).

Authorization Mechanism. For stream authorization, we define a symmetric key ksym and
two functions εs and δs for encryption and decryption, such that c = εsd(t, ksym) and t =

δsd(c, ksym) for plaintext t and ciphertext c on device d.
The stream can only be established after the ECU receives the confirmation message mc from
the ECU authentication protocol (see Figure 4.2 (1c)). The stream is usually established when a
message m is requested to be sent. The sending ECU e requests a key from the security module
y, allowing access to the stream. The request messagemq contains the identifier of the requested
stream si, the identifier of the requesting ECU e, as well as a timestamp ωe and a nonce n to
protect against malicious retransmissions. The content of the message mq is encrypted with the
ECU key ke,sym:

mc ∧m→ mq (4.4)

with mq ∈M q
s , s = (e, {y},M q

s ),

o = (e, εse((e, si, n, ωe), ke,sym))

If the received request message mq can be successfully decrypted with the ECU key ke,sym,
it must have originated from the correct ECU. The security module can then make an access
control decision based on the stored information about that particular ECU. The security module
can support arbitrarily-complex access control policies defined by the manufacturer. One such
policy could be for the security module to maintain an access control list (ACL) based on the
ECU identities. If the security module determines that the requesting ECU e is allowed access
to the stream si (α(e, si) = 1), the security module y assigns a new stream key ksi,sym. This key
is first sent to all receiving ECUs in the stream ẽ ∈ Rsi , and then to the requesting sending ECU
e. In this way, the protocol ensures that all receivers have access to the data as soon as it is sent:

mq ∧ (δsy(mq, ke,sym) = (e, si, ωe, n)) (4.5)

∧(ωe ≤ ωy) ∧ α(e, si)→ ∀ẽ ∈ {Rsi , e} : mg

with mg ∈M g
s , s = (y, ẽ,M g

s ),

o = εsy((ẽ, si, ks1,sym, ni, ωy), kẽ,sym),

ni = ρ : ρ /∈
⋃
l

ρl, l = {0..i− 1}

In theory, it would be possible to allow access to any ECU of the correct type (e.g. motor
control) that presents a valid certificate. However, it must be assumed that some ECU keys may
have been compromised by the adversary. Since it is not always possible to check the validity
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of a given certificate, using an ACL based on ECU type could lead to widespread attacks if the
adversary extracts a key from a popular type of ECU (e.g. infotainment). The use of individual
ECU identities in the ACL limits the scope of such an attack to a single vehicle (usually the
adversary’s own vehicle).

4.4 Integration

As for every security measure, the integration is an important factor to guarantee the security.
In the following, we describe the handling of certificate validations, as well as scenarios outside
the typical application of LASAN, such as the setup of the vehicle. These aspects are an es-
sential part of every authentication framework to ensure full vehicle functionality. However, in
literature, these aspects are often not covered, also because their implementation is not trivial,
often leading to suboptimal implementations and security flaws.

4.4.1 Certificate Validation

The security of digital certificates depends on the security of the corresponding private keys.
Any entity that knows the relevant private key can claim the identity and attributes described in
the certificate. Therefore, if a private key is stolen or purposely distributed, the corresponding
certificate can no longer be trusted. For example, if the private key of an ECU is stolen, a
malicious device can impersonate that specific ECU to the rest of the vehicle network. Although
ECU manufacturers can take measures to protect the private keys, it must be assumed that some
private keys might be extracted from ECUs. In particular, an adversary with the right tools and
physical access to an ECU (e.g. an after-market component) would likely be able to extract the
private key. In light of this, our system is designed to minimize the impact of a compromised
private key, as far as possible.

The same challenges regarding compromised private keys also arise on the Internet and in
other traditional computer networks that make use of digital certificates. In those contexts,
approaches such as Certificate Revocation Lists (CRLs) [17] and the Online Certificate Status
Protocol (OCSP) [146] are used to address this issue. However, neither of these approaches
is suitable for use in vehicular networks, due to the unique characteristics and constraints of
this domain. CRLs are essentially lists of certificates that have been revoked (e.g., because of
a known compromise of the private key). In order to be effective, CRLs must be frequently
updated and checked whenever a certificate is verified. Although many modern vehicles are
likely to have connectivity to external networks, it cannot be assumed that this connectivity
will be available at all times (e.g., the vehicle may lose connectivity if traveling in a remote
area). Furthermore, CRLs on the Internet usually contain a large number of revoked certificates,
making it burdensome for the vehicle to frequently download these relatively large data sources
and to store and process these lists when checking certificates. To avoid the need to download
large CRLs, OCSP allows a verifier to query the status of an individual certificate, to ascertain
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whether or not it has been revoked. However, this requires always-on connectivity in order
to check individual certificates, which again may not always be available. Furthermore, both
of these techniques present the adversary with new vectors to mount denial of service attacks
against the vehicle network. For example, if the adversary can change the OCSP response or
cause the vehicle to download a modified CRL, the vehicle may refuse to accept certificates
from legitimate ECUs. Although this may not be a serious issue on the Internet, this type of
attack would have a much greater impact in the vehicle network context. A potential attack
could be the disabling of the brake controller and thus the brakes at high-speeds.

Instead of using CRLs or OCSP, we have designed a new protocol specifically for use in ve-
hicle network contexts. The main ideas behind our certificate validation protocol are as follows:

• The vehicle manufacturer should not be required to provide an online service (e.g. OCSP)
since this may incur high operating costs, especially because it would have to be available
for the full life of all vehicles on the road.

• The protocol does not attempt to prevent owners from intentionally installing modi-
fied/rogue ECUs in their own vehicles. However, in the event of an investigation, this
should be detectable in order to ascertain liability in case of vehicle malfunction.

• The protocol only takes place when an ECU is added/exchanged, since this is when the
system is most vulnerable.

• The validation step relies on a human-in-the-loop, who could either be the vehicle owner
or a trusted representative (e.g. a vehicle workshop).

• The protocol must not restrict the choice of workshops/service centres at which the vehi-
cle may be serviced, since this may be considered anti-competitive behaviour.

The full details of our certificate validation protocol are presented in the system life-cycle
scenarios in the next section.

4.4.2 System Life-Cycle Scenarios

Throughout its lifetime, every vehicle experiences a certain set of scenarios, which are divergent
from the standard driving behavior. It is essential for any authentication protocol targeted to the
automotive domain to address these use cases. Thus, to ensure full operational capabilities,
these situations must be handled in LASAN. In this section, we describe these scenarios, as
well as the support by LASAN.

4.4.3 System Setup

The first non-standard situation the vehicle experiences is the manufacturing of its components
and the assembly of the vehicle in the factory. This process is shown in Figure 4.3. At some
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Figure 4.3: Overview of system setup and workshop situations. At manufacturing, every device is pro-
grammed an ID and a certificate. Security modules are additionally supplied the Access Control List
(ACL) for the vehicle. A workshop connects to the vehicle via a secured connection to the On-Board
Diagnosis (OBD) port. All participants are certified by the central Certificate Authority (CA) of the
Original Equipment Manufacturer (OEM).

point in this process, the ECUs and security module are bare and do not have any security
certificates or keys. The security of all devices and connections in the following process is
essential to guarantee the security of subsequent states.

Where possible, the asymmetric key pairs are generated by the relevant devices (i.e. the
security modules and ECUs). However, where this is not possible, these keys are generated
externally and securely provisioned onto the devices. To facilitate the certificate validation pro-
tocol, each device is assigned a globally-unique human-readable ID (e.g. a short alpha-numeric
code), which is printed on the physical device. Each device is issued a digital certificate that
contains its device ID, its public key, and any device-specific information (e.g. type of device
and operating parameters). This certificate is signed by the respective Certificate Authority
(CA), which could be the device manufacturer. This certificate binds the device ID to its pub-
lic key, and thus only a device in possession of the corresponding private key can assert that
identity. During this process, the programming connection between computer and device must
be secured both digitally and physically. This connection can be placed in the manufacturing
process of the device, ideally at the first start of the device (ECU or security module).

As explained in the previous section, the security module holds an Access Control List
(ACL) containing all permissible message streams. The IDs of the authorized sending and
receiving ECUs for each stream are programmed into this ACL. With this list, the security
module can verify if all ECUs are correctly built into the vehicle and which ECUs have access
to which streams. The list can be automatically generated by the configuration management
of the Original Equipment Manufacturer (OEM) and must be signed with the corresponding
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certificate. Note that an ACL is a feasible method here, as the distribution of tasks and messages
is known at design time. In case this changes via a functionality update, this may also contain
an update to the ACL.

4.4.4 Vehicle Service

Although a vehicle network may not change frequently, there will always be a need to replace
certain components in the system. For example, this might happen when a damaged ECU needs
to be replaced. To the best of our knowledge, LASAN is the only framework supporting such
exchanges. In the following, we describe the protocol to exchange ECUs but omit message
details for conciseness.

The two objectives of this protocol are (1) to determine whether or not a particular ECU is
authentic and, (2) to securely add its ID to the ACL held by the security module.

The first objective is achieved using the ID printed on the physical device and makes use
of manual validation as follows: When a new ECU is ready to be added, the vehicle owner
or workshop attempts to determine whether the same ECU ID appears in any other vehicle.
If it does, this means that there is more than one ECU with access to that particular private
key, indicating that the key has been compromised. To facilitate the process of checking for
duplicate IDs, vehicle owners and workshops should be encouraged to publish the lists of ECU
IDs they have installed. These public lists can then be consulted to check for duplicate IDs. This
process is similar to the concept of Certificate Transparency, recently developed and deployed
by Google [90].

Once satisfied that the ECU is authentic, the vehicle’s owner puts the vehicle into a special
state in which new ECU IDs can be added to the security module’s ACL. Various different
approaches could be used to authenticate the owner and put the vehicle into this state, including
a physical switch, a special vehicle key, an owner password, or a combination of these factors.
Once in this state, the owner or workshop can add the ECU and verify that the digital ID matches
the ID printed on the physical device.

It is a deliberate design decision that this procedure is not fully automated, and we argue
that this level of manual intervention is both feasible and necessary, given that vehicle service
is not likely to be a frequent occurrence. Since the vehicle owner authorizes this process, there
is no need to contact the manufacturer. This also means that the owner may permit any third
party to perform the vehicle service (e.g. the vehicle is not restricted to manufacturer-approved
service stations). The security module keeps a record of the ECU IDs that have been added in
this way, and this record can be audited if need be (e.g. as part of an investigation into vehicle
malfunction).
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4.4.5 Firmware updates

In connected vehicles, the possibility of Over-The-Air (OTA) updates is becoming increasingly
important. For unconnected vehicles, firmware updates are usually performed at workshops.
By being able to update software at any point in time, the number of visits to repair shops,
as well as the downtime of the vehicle are reduced significantly. However, firmware updates,
especially Over-The-Air (OTA) updates, can compromise security, if not handled properly. OTA
updates are available in some vehicles on the market today. In these cases, signed firmware
updates are used and are verified by the receiving ECU, if possible. If the receiving ECU does
not have the computational power to verify the certificate, an additional element, such as the
cellular gateway can perform this task. In this case, the programming of the ECU is performed
over the internal networks without security, based on trust. The only security measure against
illegitimate firmware updates from the Controller Area Network (CAN) bus is usually a simple
password that can often be recovered from the tuner community [85].

In LASAN, we can replace this simple password with our authentication scheme and ensure
that the firmware update is authenticated all the way to the ECU. All firmware updates are
run via the security module, which in turn verifies the identity of the sender and the validity
of the firmware signature for the ECU. The firmware is signed with the private key of the
sending instance, which is certified by an appropriate CA (see Section 4.4.1). After successful
validation, the security module triggers the programming of the ECU. To ensure a maximum of
security, the ECU authentication (see Section 4.3.2), including the re-validation of the security
module certificate, is started as soon as a reprogramming command is received and before a
new firmware is accepted. After successful authentication of both the security module and the
ECU, the update is installed on the ECU.

In this Section we presented an essential part of LASAN, the integration with the processes
in the automotive domain. Although often omitted in literature, the protocols and considera-
tions described are necessary requirements for any authentication framework design, as they
represent the use cases which must be supported by the authentication framework.

4.5 Verification

In this Section, we focus on the modeling and security verification of the protocols contained in
the framework with the protocol verification tool Scyther [18]. We provide a brief introduction
to Scyther and define our adversary model. As it is not possible to verify the overall framework,
we separately verify the protocols contained in LASAN. For this, we do require a set of assump-
tions, which we will detail here. We then present the formal models of the protocols and the
results of the verification. As conceptual security is paramount in authentication frameworks,
the models developed in the following will be made available online for public scrutiny.
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Scyther Tool. The Scyther tool, developed by Cremers [18, 19], performs automatic symbolic
analysis of security protocols in terms of their confidentiality (secrecy) and authentication prop-
erties. In Scyther, protocols are modeled as sets of role scripts which are executed by entities.
Each execution of a role is called a session and multiple concurrent sessions are permitted for
any role. The desired security properties for a protocol are modeled as claims made by specific
roles. If a claim is falsified, Scyther offers a counterexample showing the sequence of events
leading to that point, which will usually represent a potential attack against the protocol. For
certain claims, Scyther can perform unbounded verification which, if successful, indicates that
the claim will not be falsified irrespective of how many times the protocol is run [19]. Inter-
nally, Scyther uses the concept of patterns to reason about infinite sets of traces in a protocol
[19]. A pattern forms a labeled directed acyclic graph that, under certain conditions, could be
a realization of the protocol under analysis. Patterns can be refined according to a set of rules
and well-typed substitutions. The verification algorithm applies a pattern that violates a specific
claim and attempts to refine this into a realizable pattern that then represents a counterexample
to the claim.

Adversary Model. In line with the majority of security protocol analyses, we assume a
Dolev-Yao adversary model [24], in which the adversary has full control over all communi-
cation and is thus able to intercept, modify, replay or block any messages, as well as inject new
constructed messages. This is appropriate for our application domain since the adversary could,
for example, be a malicious device connected to the communication bus which, in the worst
case, would be the central gateway, able to exert this degree of control over all messages on
the bus. In the model, the adversary can also perform any role, which in practice means that
the adversary could pretend to be any device on the bus. However, the Dolev-Yao adversary
is assumed to be computationally bounded and thus unable to break cryptographic primitives
(encryption, digital signatures, hash functions etc.) in a reasonable amount of time. This is
a realistic assumption, given that these cryptographic primitives are widely used in other do-
mains (including Internet communication) and are not known to be broken. Finally, it is always
possible that a real-world adversary might be able to compromise one of the legitimate devices
(e.g., through malicious software or runtime exploits). However, since this is almost entirely
dependent on the actual hardware and software implementations, this class of attacks is beyond
the scope of our analysis and we assume that an authenticated device is secure.

ECU Authentication. The model of the ECU authentication protocol is described in Sec-
tion 4.3.2. While the design of the framework includes the distribution of certificates in mes-
sages ma (Equation (4.1)) and mr (Equation (4.2)), these certificates are omitted in the Scyther
model. The verification of certificates depends on external knowledge, such as locally available
root certificates or connections to external verification agencies, such as the certificate CA. This
exceeds the complexity that Scyther can verify and certificates are thus omitted in our analysis.
As methods for initial certificate distribution and verification have been used successfully and
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securely for many years on the Internet, these can be applied here as well and the omission is
reasonable.

To verify security, we define a set of claims which, if they hold, ensure the security of the
protocol. This step is crucial, as insufficient claims would lead to security flaws being ignored
by Scyther. Each role makes the following two security claims after the protocol:

1. Secrecy of symmetric ECU key: If neither the ECU’s nor the security module’s private
keys have been compromised, then the newly established shared key cannot be known by
the adversary. This is due to the fact that the only way to recover the shared key is by
decrypting it with the private key of either component.

2. Non-injective synchronization: On completion of a protocol run, all entities agree on the
roles that have been taken and the data items that have been exchanged. This synchro-
nization is non-injective in the sense that replays of complete protocol runs are excluded
since these would be detected using the nonces and timestamps in the messages.

Scyther confirms that both of these claims are successfully verified in the unbounded sense
from both the perspective of the ECU and the security module. This means that under the
defined Dolev-Yao adversary model, this protocol ensures the confidentiality of the newly-
generated shared key and achieves mutual authentication.

Stream Authorization. The model of the stream authorization protocol described in Sec-
tion 4.3.3.

While in reality, streams can be received by more than one ECU, it is sufficient to verify the
protocol with two participants, as this covers all messages transmitted. In the case of an addi-
tional receiver, a duplicate message is added in the system, which does not affect the security.

The security module communicates with each ECU using the unique ECU key, kesym, es-
tablished in the ECU authentication protocol. In this model, we assume that all ECU keys have
been securely established and use Scyther’s built-in pairwise keys (e.g. k(E1,SM)) to repre-
sent ECU keys. This is required to simplify the protocol representation and separately verify
the ECU authentication and stream authorization. Having access to the stream key implicitly
authorizes an ECU to participate in that stream and no further authentication is performed in
order to minimize the communication latency.

All authorization decisions are made by the security module but these are orthogonal to the
security claims of the communication protocol and are therefore beyond the scope of this model
(see Section 4.4.3). The access to a stream is defined at design time by the system designer and
is programmed into the security module, together with the certificates. In this model, neither the
sending nor receiving ECUs make security claims because they do not have control or visibility
over which other ECUs receive the stream key. The stream key is distributed by the security
model and can thus not be assumed as secret by a single ECU. These ECUs, therefore trust the
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security module to distribute the stream key correctly. The influence of this on the security of
the protocol is discussed in Section 4.7.3

The security module, which has overall visibility of the system, makes the following claims:

1. Secrecy of stream key: If none of the ECU keys have been compromised, then the newly
established stream key cannot be known by the adversary. As the stream key is transmitted
in messages encrypted with the ECU key, this sets up a chain between ECU and stream
key.

2. Non-injective synchronization: On completion of a protocol run, all entities agree on the
roles that have been taken and the data items that have been exchanged. Just as in the
ECU authentication, this synchronization is non-injective as replays could be detected
based on the message nonces and timestamps.

We modeled the protocol in the proprietary language required by Scyther and defined the
claims above. Feeding this input to Scyther, it confirms that both of these claims are successfully
verified in the unbounded sense. This means that under the Dolev-Yao adversary model, this
protocol ensures that the stream key is only known to the set of ECUs determined by the security
module’s authorization policy, thus authorizing these ECUs to participate in the message stream.

In this section, we successfully verified the security of the protocols in the lightweight au-
thentication framework. With the security being proven by a model checker, we now advance
to evaluate the performance of the lightweight authentication framework with a discrete event
simulation.

4.6 Simulation

For the evaluation of LASAN, we developed IVNS, a discrete event simulation of vehicular
networks, implementing our protocol. We use this simulation to evaluate the performance of
the lightweight authentication framework by implementing a set of synthetic test cases. This
section describes the underlying model and the implementation of the simulator.

4.6.1 Model

In the following, we describe the formal model of the simulator and the simulation environment.
The model is required to represent a security-enabled automotive architecture, as well as the
configuration and calibration of the simulation. While the architecture A under test is the target
of any analysis, the configuration C defines the basic configuration of the system and simulator,
such as the used cryptographic algorithms and validity parameters. The calibration, in turn,
is based on benchmarks P created on real-world systems, thus tuning the components of the
architecture to represent existing hardware. Furthermore, the model can be validated through
comparison with real-world systems, based on the set of parameters used for calibration and
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Figure 4.4: Architecture of the simulator with a 12 cell setup on a single bus. The IVNS includes a test
case generator generating architecture A, database of hardware parameters P , configuration files C, as
well as GUI and CSV output via an API.

obtained from the same hardware. We follow a compositional approach, combining these basic
simulation components to represent the complete system behavior.

The IVNS defines a simulation s which contains the architecture A to be evaluated, the
configuration C, as well as a set of parameters P , depicted in Figure 4.4:

s = (A,C, P ) (4.6)

Architecture. The architecture A contains the set of ECUs E, buses B, and gateways G, as
well as their interconnections I:

A = (E,B,G, I) (4.7)

A small subsystem is shown in Figure 4.5.
An ECU e ∈ E is identified by its application a, one or multiple communication modules

mc ∈ MC and its hardware implementation HW :

e = (a,MC ,HW ) (4.8)

The hardware components HW define the latencies t induced in every communication module
mc. These components are the central processor µ, one or multiple communication controllers
o ∈ O, as well as one or multiple transceivers tr ∈ T generating the physical signals. Further-
more, an ECU might contain a hardware accelerator acc for cryptographic operations:

HW = (µ,O, T, acc) (4.9)

Each application a running on an ECU e sends a set of messages m ∈ M . All messages with
the same message identifier id are called a stream Mid . Each message m in such a stream
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Figure 4.5: A small subsystem with two ECUs (e1,e2), security module (sm) and CAN FD bus (b1),
including internal representation of ECUs and security module. The CAN FD transmission has been
extended by a transport layer lt, implementing segmentation according to ISO-TP (ISO 15765-2) and a
security layer ls, combining session (authentication) and presentation layer (encryption).

Mid is called a message instance, or message. A message instance m can be secured by a
function sec(m). A stream needs to be authorized by a function auz (Mid). Depending on the
security settings of the simulation, function auz (Mid) may trigger a set of authentication and/or
authorization functions. In LASAN, e.g., an authentication auc(e) is performed per ECU, after
which message streams may be authorized.

The number of communication modules mc ∈ MC depends on the number of controllers
and transceivers available and used by the ECU. A communication module mc may contain all
or a subset of layers as defined in the Open Systems Interconnect (OSI) model. This includes
an application layer la, a presentation layer lpr, a session layer lse, a transport layer lt, a network
layer ln, a data link layer ld and a physical layer lp:

mc =(la, lpr, lse, lt, ln, ld, lp) (4.10)

Many bus systems require only a subset of these or summarize cross-layer functions. In
CAN Flexible Data-Rate (FD) with segmentation according to ISO 15765-2, e.g., only trans-
port layer lt, data link layer ld, and physical layer lp are used. Furthermore, cross-layer security
functions of session and presentation layer can be summarized as a security layer ls. Cryp-
tographic operations such as encryption/decryption and signing/verification are located in this
security layer ls. The security layer further handles stream initiation and authentication frame-
works such as LASAN and TESLA.
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Some authentication frameworks, such as LASAN, require a root of trust in the network.
Being an ECU with defined security functions, a security module sm ∈ E is defined as an
ECU. The same holds for a gateway gw ∈ G, which is a type of ECU (G ⊂ E) with multiple
interfaces where the application layer is filtering and forwarding messages depending on an
ACL:

sm = gw = (a,MC ,HW ) (4.11)

A bus b ∈ B is defined by its properties, including data rate d, maximum message length
lmax , bus access scheme mac, and the velocity factor υP of the medium:

b = (d, lmax ,mac, υP ) (4.12)

Configuration. The configuration C contains the settings c valid for all components. This
configuration defines the framework of the simulation, including the parameters such as key
lengths and selected algorithm for encryption/decryption, signing/verification and hashing al-
gorithms on ECUs, as well as other settings, such as the validity of nonces and certificates
and maximum simulation times. The settings are dependent on the implemented layers and
protocols, which can define and load any configuration setting and can thus be extended easily.

C = (algsym , keylensym , algasym , keylenasym , alghash) (4.13)

Other possible settings could be different operating modes for the security frameworks, caches
or components, such as gateways.

Parameters. The parameters p ∈ P are used to calibrate the IVNS to a real-world environ-
ment. Calibration parameters are typically obtained by benchmarking existing hardware. The
calibration is crucial to be able to simulate reality as accurately as possible. Furthermore, this
allows validation of the model and simulator through comparison of a calibrated simulation
with the underlying hardware used for calibration. The required measurements depend on the
selected algorithms but typically include cryptographic parameters, such as encryption/decryp-
tion, signing/verification, hashing, key generation, as well as transmission related parameters,
such as gateway latencies and bit transmission times for the selected buses.

P = (tenc, tdec, tsign , tverif , thash , tGW , ttx ) (4.14)

Parameters can be defined as constants (e.g., bit timing on bus), lookup tables (e.g., encryp-
tion/decryption latencies) or functions (e.g., hashing latency). The parameters are loaded at
runtime, based on the configuration of the individual components depending on these parame-
ters. Furthermore, they are applied per ECU and can thus be used to define varying hardware
for ECUs of different computational capabilities.
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Figure 4.6: Components of message transmission latencies per layer, as defined in our model. Function
ts defines the sending time, function tr defines the receiving time, per layer, respectively. Depending
on the security setup of the system, the security layer has high and varying influence on the message
transmission latency, being responsible for encryption, as well as authentication and authorization.

Message Flow. The components described above determine the latencies a message experi-
ences when being sent. Every component and every layer defines and adds its own latencies. A
simple message transmission is shown in Figure 4.6.

A message thus experiences the following delay tm in conventional transmission, where ts,
tb and tr are sending, bus and receiving delays, respectively:

tm = ts + tb + tr (4.15)

These components can be defined in more detail based on the layers (see Figure 4.6). On
the sending ECU, a message experiences a delay ts, which consists of the sending delays of the
application ts(a), the security layer ts(ls), the transport layer ts(lt), the data link layer ts(ld) and
the physical layer ts(lp):

ts = ts(a) + ts(ls) + ts(lt) + ts(ld) + ts(lp) (4.16)

The bus introduces latency tb, mostly depending on the data rate of the bus and the size of
the message, as well as the velocity factor. On the receiving ECU, the message experiences a
further latency tr, consisting of the receiving latencies of the physical layer tr(lp), the data link
layer tr(ld), the transport layer tr(lt), the security layer tr(ls) and the application tr(a):

tr = tr(lp) + tr(ld) + tr(lt) + tr(ls) + tr(a) (4.17)

In case an authentication protocol is used, the first message might experience a longer send-
ing delay ta, as first, the authentication and authorization need to be performed. In this case

ta = tauz + ts + tb + tr, (4.18)
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where tauz is highly dependent on the authentication and authorization framework and the state
of the system, specifically the number and size of messages required, as well as the selected
authentication mechanisms and their speed on the ECU.

Protocols. The above latencies are the abstraction level of events for a discrete event sim-
ulation on the basis of OSI layers. The latencies per layer l are required to be calculated at
runtime, based on the chosen implementation (e.g., CAN FD), required algorithms (e.g., en-
cryption), state of the system (e.g., bus load) and inputs (e.g., message length), among others.
Thus, the implementation needs to take into account the behavior of the layer l as defined in
its specification, as well as the measurements of basic hardware parameters, as defined in the
parameters P . The accuracy of the abstraction is defined through the detail of implementa-
tion. The runtime values might vary considerably, based on, e.g., bus access for tb or, in case
of LASAN, a potential authentication required before authorization, triggering a separate set
of message transmissions. To achieve higher performance, these sub-layer latencies are com-
puted at runtime and abstracted to a single event in the model, reducing the number of events
considerably and thus increasing computational performance.

Modularity. The complexity of the model pays off when attempting to compare different
networks. All components have defined functions, settings and interfaces. This allows a high
amount of modularity in the system, as every component can be exchanged as required. For ex-
ample, to exchange a bus system, only the implementation of the bus b needs to be adjusted. In
the same manner, the authentication and authorization framework can be exchanged by chang-
ing the security layer ls. Furthermore, the underlying hardware for an ECU e or the security
module sm can be easily exchanged, simply by switching the parameter set P . In this way, it is
easily possible to, e.g., add a cryptographic accelerator to an existing architecture.

Alternatively, single ECUs may be configured with a different set of parameters, only ap-
plicable to a specific ECU. This allows creation of different ECUs, some more powerful than
others. While the base ECU of the architecture could be an 8-bit controller, e.g., used for the
outer mirror of a car, some ECUs, such as the infotainment unit, might be significantly more
powerful.

Granularity. This model represents the basic setup of an automotive architecture, including
security components. The key to performance in the development of a simulation model is the
abstraction level. Too detailed a model may result in unreasonably long computation times,
while too highly abstracted a model results in insufficient accuracy of results.

We chose the abstraction level of our model to be especially efficient for the analysis of long-
term processes in automotive systems, such as protocol analysis. To achieve this, we do not
model single bit times as separate events, but summarize a set of latencies calculated at runtime
into a single event in our discrete event simulation. The chosen abstraction for our model is on
the level of OSI layers. We separately model the layers as events, but base the timeouts on the
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Figure 4.7: A screenshot of the GUI. Here, a LASAN setup is shown. The Event View (left) shows
every message sent and received on all buses. Red markers indicate the authentication of ECUs, green
markers indicate the authorization of streams, and blue markers indicate data messages, occurring with
significantly higher frequency after all streams have been set up securely. The Message View (right)
shows the number of messages sent (red) or received (green) by a device, in this case the Security Module.

parameter set P . This allows us to calculate latencies in the system with the accuracy of the
smallest measurable time component, typically 1 bit time on the bus. However, due to bit times
being summarized in events per layer, these smallest latencies cannot be exported or analyzed
individually. Therefore, The smallest level for analysis is an OSI layer latency.

4.6.2 Implementation

The simulation framework implements the model as described in Section 4.6.1. The Python
language has been used for implementation. Using an interpreted language like Python allows
fast and easy extension of components. Furthermore, a large number of libraries are available,
speeding up the implementation process, and simplifying future extension by the community.
The discrete event handling is based on the Python library SimPy [164]. An overview of the
components of the IVNS is given in Figure 4.4.

The simulation environment is set up with the given configuration C, typically read from
configuration files. The network architecture A is either defined by the user, or generated by a
test case generator and fed into the core of the simulation environment. The test case generator
uses statistical processes to generate new architectures, based on a set of parameters for the
architecture. These parameters include the number of ECUs, number of messages, etc. This



4.7. Evaluation 99

architecture is calibrated by the parameters P , taken from hardware benchmarks. In our case,
these benchmarks have been performed on an STM32F415 microcontroller for software and
hardware implementations of cryptographic functions. These benchmarks will be published
together with the IVNS for free use.

The Graphical User Interface (GUI) supports different plugins for analysis of the running
system. A screenshot of the Event View and Message View is shown in Figure 4.7. There, the
setup and operation of a system with the LASAN authentication framework, 5 ECUs and one
security module are shown.

Every component in this simulation is built in a modular fashion and is easily exchangeable.
A reporting and filtering system is in place, allowing collection, display, and export of any value
in any of the components. These values could include the state of the ECU and security module
buffers, the load on the bus, or the internal state of any task on an ECU. Reported values can
be filtered to maximize performance of the IVNS and minimize the storage required for export
files.

The IVNS has been built from the ground up with parametrization in mind. This allows
easy import of externally generated parameters, e.g., latencies for encryption/decryption oper-
ations or the forwarding latency in a gateway, making the IVNS highly flexible. Initially, all
implemented ECUs are based on an STM32 controller, but by adding parameters P measured
on other devices, the IVNS can flexibly simulate any automotive networking environment.

4.7 Evaluation

In this section, we evaluate the performance of the IVNS proposed in the previous section with
a set of synthetic test cases and a realistic case study. Furthermore, we analyze and evaluate the
characteristics and performance of LASAN.

4.7.1 Simulator

We evaluate IVNS from multiple perspectives. On the one hand, we analyze the computation
time and memory required for network systems of varying size and varying security protocols,
to prove its performance. On the other hand, we demonstrate with a case study of a distributed
battery management system how IVNS can be used to feed back performance data to the archi-
tecture design process. All computations in this section have been executed on an Intel Core
i5-3450 CPU with 4 GB of RAM.

Synthetic Test Cases. To evaluate the computational and memory performance of IVNS,
we implement two authentication protocols, LASAN and TESLA. Using the built-in test case
generator (see Figure 4.4), we automatically generate architectures of varying sizes. These
architectures include a varying number of ECUs and 500 messages. The number of receivers
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per message increases with the number of ECUs. This demonstrates the multicast behavior of
messages in automotive networks.

The results are shown in Figure 4.8. As it can be clearly seen, the average memory require-
ment for a TESLA simulation stays fairly constant below 250 MB, even for large systems with
up to 100 ECUs. The average memory usage for a LASAN simulation increases linearly, re-
sulting from the larger number of messages transmitted in the system and needing to be stored
in buffers. However, even for 100 ECUs, the memory requirement is less than half that of a
TESLA simulation. As the number of receivers increases, the number of message objects to be
processed in the separate receiving ECUs also increases. The higher memory requirement of
the TESLA simulation originates from the number of keys being stored for all messages in the
system. Here, we generate a chain of 400,000 keys, which is stored on the ECUs and applied in
reverse order. This number is reasonable, as for a message with a period of 10 milliseconds, this
set of keys lasts about 1 hour. In any case, the memory consumption for simulation of systems
of realistic size stays below 250 MB, which is very low for modern desktop computers.

When evaluating the computation time required to simulate a network, we see a clear cor-
relation between LASAN and TESLA in our simulator. This is expected, as both systems
follow the same ECU- and bus-internal message sending sequences, as defined in Section 4.6.1.
Though the computation time exhibits exponential behavior, even for large systems, it remains
below 10 minutes. As in the automotive domain systems rarely exceed the threshold of 100
participants on the bus, this computation time is reasonable.

As all computations have been performed on a commercial off-the-shelf desktop computer,
IVNS is ideal for evaluating automotive networks in a design environment. There, the feedback
of the simulator can be used as an input to the optimization functions of other tools, or, as will
be shown in the following case study, as feedback to the designer.

In summary, IVNS can be used to efficiently analyze automotive architectures of differ-
ent sizes on commercial desktop computers, enabling designers to ensure real-time require-
ments while prototyping secure applications and security protocols. In the case of LASAN vs.
TESLA, e.g., our simulator shows that LASAN allows setup of streams significantly more ef-
ficiently than TESLA, with stream setup times faster than 2 ms, on ECUs with cryptographic
hardware accelerators. Details of this comparison will be shown in Section 4.7.2.

Case Study. To show the applicability of IVNS to real-world applications, we analyze the
case study of a distributed embedded Battery Management System (BMS), as might be used in
next-generation Electric Vehicle (EV) batteries [161]. In this system, each cell in a battery is
equipped with a microcontroller, allowing it to survey its own state of charge (SOC) and State
of Health (SOH). Furthermore, such a setup can allow battery cells to exchange charge and thus
implements active cell balancing in a distributed fashion. Secure communication is of particular
importance in the context of such BMSs to ensure the safety of high-energy Lithium-Ion (Li-
Ion) cells.
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Figure 4.8: Evaluation of computation time and average memory consumption of the simulator for
architectures of different size and different authentication frameworks. IVNS stays below 10 minutes of
computation time and below 250 MB of RAM for any realistic test case.

graphic hardware acceleration, as well as for different numbers of cells and network topologies.
The system is secured with the authentication framework LASAN. Different numbers of cells
are used in different applications. Starting from 3 battery cells, such as for laptops, we increase
the architecture size to 24 and 48 cells, often in use for electric bicycles and hybrid electric
vehicles, respectively, up to 96 cells, such as in use for EVs. The architecture choice we investi-
gate is the division of cells onto buses and has a large influence on complexity, weight and cost
of the system. The number of buses, and a gateway, if required, cause additional weight and
cost. On the other hand, connecting all battery cells to a single bus can lead to an increased bus
load and thus system setup time, as all cells have to negotiate secure messages. The results are
shown in Figure 4.9, illustrating the worst-case system setup time, representing authentication
and authorization over the number of battery cells in the system. To estimate the worst-case
setup time of the system, we assume that all battery cells need to transmit all status messages
and charge exchange requests at the same time, right at the start of the system. While this is not
a realistic test case (typically such transmissions are spread over a range of hours), it gives us a
worst-case estimate for the setup time.

Evaluation. From Figure 4.9, we see that the hardware-accelerated system is significantly
faster than the software-only implementations in all cases. This behavior is expected. The
system setup time exhibits an exponential behavior, increasing with the number of cells in the
system. This is due to the fact that the employed distributed battery management system uses
broadcasts on nearly all messages. To achieve full security across all these messages and nodes,
LASAN needs to exchange grant messages and cryptographic keys with every receiving ECU
for every message to be sent.

In the following, we analyze the distributed battery management with and without crypto-
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96 cells, hardware accelerated, as well as software only implementations, exhibit a very high
latency of about 50 to 80 seconds.

Based on the behavior of LASAN and the requirements of the system, a designer might want
to split the system into multiple buses. While this should decrease the setup time, quantifying
the latency advantage is not trivial, due to it being based on the number of messages in the
system and the number of receivers per message, as well as the performance of all ECUs. With
IVNS, the system can easily be split into buses of different sizes. Results of these tests are also
shown in Figure 4.9 for 12 and 24 cells per bus and hardware accelerated, as well as software-
only implementations, respectively. As this split onto multiple buses leads to a large amount
of parallelization across buses, the worst-case system setup time can be reduced significantly.
In case of an electric vehicle battery with 96 cells and 12 cells per bus, the system setup time
can be reduced to below 10 seconds. As for other systems the exponential behavior does not
have such a large influence, the savings are smaller, yet significant. In the case of 48 cells, a
typical hybrid electric vehicle battery, e.g., the setup time can be reduced from over 20 seconds
to about 3 seconds, when using 12 cells per bus.

Optimization. These results can be be fed back into the architecture design. In case the
specification, e.g., for an electric vehicle battery requires the designer to build a system with
a worst-case system setup time of below 10 seconds, the results obtained by our simulator
suggest a system with a maximum of 12 battery cells per bus and hardware acceleration. For
the designer of an electric bike with 24 cells and similar requirements, the simulator clearly
shows that the additional cabling effort and cost for hardware accelerated controllers required
for a splitting of buses does not lead to much shorter setup times. In this context, the IVNS can
be integrated with the design for secure communication architectures in vehicles.

This concludes the evaluation of IVNS. In the following, we will evaluate the proposed
LASAN for security, as well as for performance, using IVNS.

4.7.2 LASAN

In the following, we will evaluate our authentication framework LASAN. For our tests, we
are interested in the setup process of message streams and thus do not require a functional
verification of the data itself. Therefore, we do not implement actual control algorithms, but
transmit dummy data. However, the selected message size and timing patterns follow existing
distributions.

We base our communication on a CAN FD bus [76]. CAN FD is an extension of CAN,
allowing to increase the data rate in the data portion of the frame, such that a higher overall
throughput can be achieved. Due to its low cost, similar to CAN, and backwards compatibility,
CAN FD is likely to find widespread use in future networks.

The hardware parameters for the IVNS have been obtained from an STM32F415 microcon-
troller. In the context of automotive ECUs, this microcontroller is a midrange device and offers

In the case of large systems on a single bus, such as batteries for electric vehicles with
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key length public key private key
(Bits) operations operations

512 0.206s 0.886s
1024 0.709s 4.977s
2048 2.626s 33.181s

Table 4.1: Latencies of RSA encryption and decryption in software for different RSA key lengths, mea-
sured on an STM32F415 microcontroller.

hardware acceleration for Advanced Encryption Standard (AES) encryption. Examples for the
performance with AES with and without hardware acceleration are given in Figure 4.10. There,
the encryption and decryption latencies depending on the clear text length are shown. Clearly
visible are the block size of 128 Bit for AES in Figure 4.10.

The asymmetric RSA algorithm can only be implemented in software on this device, as no
hardware acceleration exists. The encryption and decryption times depend on the key length.
Examples are given in Table 4.1. Note the very long encryption and decryption times.

The authentication frameworks presented here are implemented transparently to the appli-
cation layer. All handshakes and required messages are handled on the communication layers.
From the perspective of the application layer, the start time of the network is simply increased.

All results shown in this work have been generated with the IVNS. For the results displayed
here, we built three different communication layers for evaluation. These include LASAN as
proposed in this work, as well as the existing authentication frameworks TLS and TESLA. TLS
is mostly used in Internet traffic, e.g. in HTTPS connections. While not targeted for embedded
systems or multicast communication, we implemented and used TLS v1.2 as a baseline [23].
We further implemented a communication layer utilizing TESLA [133] to compare with the
other approaches. Both, TLS and TESLA have been implemented as timing correct. That
means that not all functionality is fully implemented, but the correct lengths of cryptographic
algorithm runtimes, message lengths and transmission times are ensured. On the other hand, to
save memory and computational requirements for the simulator, identical certificates and keys
are used for all ECUs. This is a reasonable approximation, as we are only interested in timing
and not actual functionality of the protocols.

4.7.3 Security Comparison

Comparing the security of different approaches is no trivial task. Security flaws are often found
based on implementation flaws, not conceptual flaws. As we are comparing the conceptual
approaches, we keep the security comparison at a high level. In the following, we will shortly
detail the cryptographic algorithms used in the different approaches and explain differences in
the security.
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To level the playing field and allow equal conditions for all compared frameworks, we use
the same cryptographic methods for all approaches. For asymmetric functions, we use RSA
with a key length of 512 Bits and an exponent of 65537. We use MD5 for hashing algorithm for
the certificate calculations. For symmetric encryption, we use 128 Bit AES in the Cipher Block
Chaining (CBC) mode.

We further assume that all keys used in the system have a limited security lifetime and must
be renewed regularly. This is typically the case, as long key lifetimes increase the chances of
reverse engineering via brute force attacks. It is necessary to exchange a key often enough that
it is unlikely that a key can be brute forced within the given time. Note that multiple message
transmissions with the same key do not have any influence on the security of the key, but the
potential insecurity is a result of a key’s long validity. Further, this time for brute force attacks
decreases over time, as computational power increases, following Moore’s Law.

Note that the TESLA Request For Comments (RFC) in [133] defines the message security
mechanism to be used as MAC. The RFC does not consider encryption of messages. While this
is sufficient to protect the integrity of messages (i.e. no attacker can alter or create a message
without detection), the confidentiality (i.e. an attacker can read a message) remains unprotected.
From the technical perspective, TESLA could also use exchanged keys for encryption, but the
RFC only defines MACs and a strict implementation would need to follow this. While this does
not impact the security of the authentication and authorization mechanisms, it does heavily
impact the security of data messages.

TESLA further relies on a master key, securely exchanged before the conversation. This
exchange is not further defined in the RFC [133] and it is suggested to use existing mechanisms.
We assume here, similar to the other mechanisms, an initial key exchange via an asymmetric
encryption scheme.

Furthermore, note that TLS only supports unicast messages. This increases the security, as
no keys are shared among any of the participants, but also increases setup time, as a separate
key needs to be exchanged with every receiver, as well as bus load, as duplicate messages need
to be send for every receiver.

With LASAN, the symmetric message stream key is shared among all senders and receivers.
As symmetric cryptography is used to protect message transmissions, it would be possible for
a malicious receiver that has circumvented the ECU authentication and stream authorization
to pretend to be the sender of a message stream and send message to all participants. This is
however, easily detectable on the approved sender side, as a message is received that should
never have existed on the bus. In this case, the current stream key can be voided and the
communication participants (and possibly the user) can be notified of a breach in security. It
would be possible to enhance LASAN with either a reverse key chain and include a MAC, such
as in TESLA or use asymmetric signatures to enforce directionality in the message transmission.
However, as we will show in Section 4.7.4, these approaches lead to significantly longer and
unacceptable message transmission times. As this illicit behavior is easy to detect on the sender
side, we do not require these additional measures.
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Figure 4.11: Comparison of start-up times in vehicles with varying numbers of ECUs and with different
authentication frameworks (LASAN, TLS, TESLA) in software (SW) and hardware supported (HW) im-
plementations. Architectures under test have been automatically generated and per number of ECUs, 5
test cases have been executed. Note that LASAN HW and SW are superimposed due to scale.

In summary, we can say that while there are slight differences in the concepts of the different
approaches, the security of the authentication and authorization protocols should be comparable.

4.7.4 Latency Comparison

To evaluate the lightweight authentication framework, we use sets of randomly generated test-
cases from our simulator. Based on the number of ECUs in the system, an architecture is
generated. In this architecture, ECUs are assigned randomly to buses, if more than one bus is
used, a central gateway is added. Messages are assigned random lengths and periods, based
on real-world distributions and are distributed to the sending ECUs. To approach realistic net-
work sizes, for every ECU in the network, five messages are assumed. Receiving ECUs are
randomly assigned. Assignments of sending and receiving ECUs are controlled by setting a
guiding Median Absolute Deviation (MAD) for the stream to ECU distribution.

We compare LASAN with the existing authentication frameworks TLS and TESLA. The
results for a vehicle start-up without any previous authentication or authorization of any com-
ponent or message are shown in Figure 4.11. There, we compare the worst-case startup-time,
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i.e. the time until all ECUs are authenticated and all messages are requested and authorized
at the same time, for different numbers of ECUs and messages in the system. Both hardware-
and software-supported implementations of the authentication frameworks are shown. In the
following, we evaluate and interpret these results.

TLS. Clearly visible is the rapid latency increase for TLS with the number of ECUs and hence
messages. As in TLS there is no common root of trust for message streams in the network,
every message needs separate authentication between the sending ECU and all receiving ECUs.
The overall start-up time is thus defined by the ECU sending or receiving most streams and
thus requiring the longest time for encryption and decryption operations. Even at medium size
networks of 40 ECUs onwards, the time for a full vehicle setup is in the range of one hour. For
slightly larger networks of around 50 ECUs, start-up time reaches the simulation timeout of two
hours.

TESLA. For TESLA, the structure of the protocol is visible in the form of delays in the key
generation. As TESLA requires keys to be generated before transmissions, the number of key
sets to be generated depends on the number of streams to be sent by one ECU. The slowest
ECU, i.e. the ECU with the most streams to send, defines the start-up time of the vehicle. This
key generation is visible as steps in Figure 4.11. In our testcases the number of messages sent by
every ECU is kept relatively constant, based on a given MAD of 0.2. This is represented by the
limited number of steps in Figure 4.11. The key generation needs to be performed periodically.
In this setup, we are using 400,000 keys. Once these keys are exhausted, a new set needs to be
generated. The period for key renewal is dependent on the period of the message, as for every
transmission a single key is used. A set of 400,000 keys and a message period of 10ms requires
a new set of keys to be generated after about 1h. With the number of ECUs and message streams
in the network increasing, more often than not, a single ECU sends a larger set of messages.

Figure 4.11 clearly shows that hardware accelerated implementations of all authentication
frameworks are significantly faster due to the faster encryption (compare Figure 4.10).

It is also clearly visible that TESLA and TLS have not been designed for the automotive
environment, requiring real-time constraints and support for messages with multiple receivers.
The key authentication (TLS) and preparation (TESLA) are far too large to be employed effi-
ciently.

LASAN. Compared to TLS and TESLA, LASAN is significantly faster. By minimizing the
number of message transmissions and the sizes of messages in the authentication and authoriza-
tion process, we reduced the start-up time to a minimum. As shown in Figure 4.11, LASAN
is faster for all realistic network sizes, i.e. from 20 ECUs onwards, even if only a software
implementation is used.

LASAN is analyzed in more detail in Figure 4.12. There, a comparison of hardware and
software implementations of the stream authorization is shown. The setup latency as depicted
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here is the worst-case start-up time of the car, if all messages in the vehicle are authorized
at the same time. This scenario is rather unlikely, as event-based messages without real-time
properties, such as button presses by the driver, only need to be authorized when transmitted,
thus reducing the number of streams significantly. Further, Figure 4.12 depicts the maximum
setup latency of all streams in the vehicle. By contrast, Figure 4.13 shows the individual setup
latencies of all streams in two architecture configurations. It is to be noted that a large number
of streams experience lower latencies than the overall system latency given in Figure 4.12.
Thus, the stream setup could be prioritized, ensuring that streams required earlier are authorized
earlier. The scheduling of stream setups according to priorities is an optimization topic in itself
and is out-of-scope of this work.

When analyzing Figure 4.12, the exponential behavior is to be noted. This results from the
additionally required authorization messages including the symmetric stream key for additional
receivers. The resulting increase is acceptable even for large systems with 500 messages, as
shown in Figure 4.12. Increases beyond this number of messages are unlikely in the automotive
domain.

The clustering of messages can be explained through the architecture generation. To model
a realistic system, where messages are received and processed by multiple components, the
number of receivers is increased by 1 every 25 streams. As the additional receiver also needs a
grant message with the stream key, the start-up time rises.

When comparing software and hardware supported implementations of LASAN, the advan-
tage of hardware supported implementations can be clearly seen (see Figure 4.12). By utilizing
the increasingly existing hardware accelerators in ECUs, in a system with 500 message streams
the start-up time can be reduced from 13.18s to 2.97s. Table 4.2 compares the delays introduced
by LASAN into a single stream setup. If ECU authentication is completed and hardware support
is available, a stream can be set up in less than 2ms. This is by far sufficient when comparing it
with most conventional messages, such as in the electric test vehicle EVA (see Chapter 2). EVA
is a fully functional electric taxi, built as a research platform by TUM CREATE, supporting re-
search into electric vehicles. In EVA, no message is transmitted with a period under 20ms and
all messages are specified to tolerate a delay of up to 80ms. Modern ADASs might have more
strict requirements below 10ms, but even here, the setup time is still appropriate. Additionally,
for extremely high real-time constraints, a stream can be authorized at vehicle startup, reducing
the setup delay required at the time of message transmission to zero.

Future Architectures. Future automotive architectures are expected to supply more band-
width, computational power and memory, while at the same time reducing the overall number
of ECUs. This ECU consolidation will lead to LASAN gaining efficiency in the future. The
higher computational power and memory can support larger key lengths and stronger cryp-
tographic measures while driving down the latencies LASAN is currently experiencing. The
higher bandwidth will further contribute to a reduction in stream setup latencies. ECU con-
solidation, also with the possible consolidation of message streams, would decrease vehicle
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ECU Authentication Setup Latency
Hardware Software

included 1.4s 2.3s
not included 0.0016s 0.0046s

Table 4.2: Stream setup latencies using LASAN for a single stream in ideal conditions (2 ECUs, single
bus, no cross traffic).

start-up delays in LASAN, as delays are mostly dependent on the number of receivers and
message streams.

Summary. As shown in the preceding evaluations, LASAN offers low latency stream autho-
rization, while keeping ECU authentication in acceptable boundaries. Compared to existing
authentication frameworks LASAN performs highly efficiently, lowering latencies in typical
network sizes of 60 to 100 ECUs by on average factor 49 for TESLA and factor 234 for TLS.
Yet, LASAN can be improved by scheduling stream authorization based on priority and only
when required. This way, stream authorization overhead can be reduced down to 1.6ms, a
value acceptable for all but the applications with the strictest real-time requirements. For these
applications, streams can be set up a priori, before real-time responses are required.

4.8 Concluding Remarks and Future Work

In this Chapter we present the design, evaluation, verification and integration of the Lightweight
Authentication for Secure Automotive Networks (LASAN) and the In-Vehicle Network Sim-
ulator (IVNS). We designed LASAN to achieve high performance, even in environments with
low computational power and network bandwidth. We showed that the protocols contained in
LASAN can be verified with standard network protocol verification tools and thus are proven
to be secure to known attacks. We evaluated the performance of LASAN with the IVNS and
showed latency decreases of factor 49 to 234 for typical network sizes over existing frame-
works, while keeping the security steady. This has been achieved through reducing message
sizes, reducing the number of messages, and optimizing use of protocol components for auto-
motive environments. An acceptable loss of runtime flexibility in static automotive networks
is compensated for by a secure and real-time capable authentication and authorization of all
network participants and messages. As with any digital security measure, the security strength
of LASAN is highly dependent on the key length used. With rising computational power and
memory, LASAN can make use of greater key lengths, thereby maintaining security. LASAN
has further been shown to integrate well with and support existing scenarios in the automotive
domain, allowing and supporting secure firmware and ECU replacements and updates from the



4.8. Concluding Remarks and Future Work 111

automotive authentication mechanism.
This Chapter also presents the IVNS, an open source framework for modeling and simulat-

ing secure automotive networks, allowing real-time performance analysis. The model includes
components and interconnections in automotive networks, a basic configuration, as well as a set
of parameters. Parameters can be supplied to tune the components to real-world behavior. IVNS
is implemented in Python and is highly modular, allowing easy extensibility. It is available as
open source for free use by the research community and industry. By modeling a sufficiently
high abstraction level of events, we achieve high performance in terms of computation time
and memory requirements, analyzing networks of up to 100 nodes in under 10 minutes, while
keeping memory utilization below 300 MBytes. The usefulness of the IVNS has been presented
in a case study to quantify the real-time behavior of a secure distributed battery management
system. By adjusting the architecture slightly, the performance of the system could be increased
by close to an order of magnitude.

While this work focused on the evaluation of LASAN, future work will be concerned with
optimizing the framework based on the results acquired in this evaluation. By scheduling ECU
authentication and stream authorization messages in a priority-based fashion, the performance
for individual messages and thus components and control systems can be increased signifi-
cantly. This can be achieved in the same fashion as optimization for safety-critical applications,
while accounting for the security specifics. Further, the security of LASAN, as for every se-
curity measure, heavily depends on the correctness of the implementation. To guarantee this,
a reference implementation of LASAN and the discrete event simulation used for evaluation is
planned to be published as open source. Further, the basic verification of LASAN, as shown
in this work, shall be extended to allow verification of real-world LASAN implementations
(Hardware-in-the-Loop).

production of the vehicle till the end-of-life. To the best of our knowledge this is a first for an
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Flexible and Reliable

Message Scheduling in FlexRay

5.1 Problem Description and Summary

The amount of software and Electronic Control Units (ECUs) in cars is continuously increas-
ing. New Advanced Driver Assistance Systems (ADASs) are one of the major selling points
of vehicles and rely heavily on the use of software to achieve the required functionality. These
applications are not implemented on one single ECU, but distributed over multiple ECUs. To
achieve the desired functionality, communication between the ECUs is required. Furthermore,
to secure these vehicle networks, the transmission of large and infrequent messages, e.g., for au-
thorization, may be required. When defining a communication system, either an event-triggered
or a time-triggered architecture needs to be selected.

In time-triggered, or Time Division Multiple Access (TDMA), systems, each message is
assigned a time slot in which it is transmitted. The assignment of messages to time slots is
called a schedule. This schedule is usually repeated infinitely. TDMA allows easy calculation
of the Worst Case Response Times (WCRTs), as the schedule is fixed at time of implementation
and usually not changed at runtime. These WCRTs rely on the assignment of messages to time
slots. A message always has to wait until the assigned time slot repeats, before it can be sent.
This can lead to high WCRTs, if a message misses its slot. TDMA schedules do not allow
preemption. A TDMA system might lead to oversampling, when a message cycle time is not
equal to, or a multiple of, the schedule duration. Additionally, as the sizes of time slots are
fixed, it is usually not possible to transmit messages longer than one slot length.
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Figure 5.1: Framework for policy-based scheduling in time-triggered networks. A design time schedu-
ling approach determines a slot to ECU assignment for a set of messages. During runtime our scheduler
then assigns the event-triggered messages created in the application layer to communication slots de-
pending on their priority.

By contrast, event-triggered systems transmit messages as required, allowing more flex-
ibility in message transmissions and a higher utilization of the underlying bus system. An
arbitration process is used to avoid collisions of messages transmitted on the bus. Due to the
option to transmit messages at any point in time and the arbitration process of an event-triggered
system, it can be difficult to calculate the WCRTs. For example, the generally accepted WCRT
calculations for the widely applied Controller Area Network (CAN) bus have been shown to be
incomplete only after 13 years [168, 20].

When using large and infrequent messages, such as typically used in authentication mech-
anisms (see Chapter 4), time-triggered systems require a large amount of bandwidth to be re-
served statically at design time. At runtime, however, such reservations might only be used very
infrequently. Furthermore, in most time-triggered systems, authentication messages will exceed
the length of an individual timeslot and no provisions for segmentation of messages exist. These
aspects make time-triggered systems, which are a necessity for real-time behavior, inefficient
or even impossible to be used in secure communication environments. The efficient transmis-
sion of messages with the above characteristics is essential to enable security on time-triggered
systems.

This chapter proposes a virtual communication layer which enables policy-based schedu-
ling in time-triggered networks. Figure 5.1 presents our framework, consisting of a design
time scheduling determining a slot to ECU assignment, and a priority-based runtime scheduler,
supporting message preemption. It enables incremental changes and significantly decreases the
complexity of time-triggered systems. Furthermore, it allows to transmit large messages, longer
than the length of one time slot and allows more efficient reservation for infrequent messages,
thus supporting security mechanisms, such as authentication frameworks. As the introduced
virtual communication layer complies with the underlying time-triggered transmission scheme,
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Figure 5.2: FlexRay schedule with n slots in the static segment, dynamic segment, Network Idle Time
(NIT), symbol window and repetitive schedule containing c communication cycles.

it enables mixed criticality systems supporting concurrent time- and event-triggered communi-
cation. This enables the introduction of security mechanisms, such as authentication protocols
into legacy time-triggered communication mechanisms.

FlexRay. The proposed framework is implemented for the time-triggered segment of the
FlexRay bus. FlexRay is an automotive communication system with a bandwidth of up to
10 Mbit/s, incorporating TDMA and an event-triggered segment into one schedule. In FlexRay,
TDMA is called the static segment and the event-triggered segment is called the dynamic seg-
ment. A FlexRay schedule is organized into a fixed number of cycles c. Each cycle is divided
into static and dynamic segment, as well as synchronization segments (see Figure 5.2). Over
the runtime of a FlexRay system, the schedule is repeated infinitely.

Each cycle of the static segment is further subdivided into time slots. The time-triggered
communication in the static segment allows for a straight-forward calculation of response times.
The priority-based arbitration in the dynamic segment, however, makes it difficult to calculate
response times [149]. By contrast, policy-based scheduling ensures strict priorities per ECU
and easy to compute WCRTs.

Contributions. To allow the implementation of security mechanisms with infrequent large
messages on existing time-triggered communication systems, this work proposes (1) an archi-
tecture for policy-based scheduling of event-triggered messages in time-triggered communica-
tion systems, (2) a set of scheduling algorithms to schedule policy-based messages to time-
triggered slots, and (3) a prototypical implementation of this scheduling approach for FlexRay.

Policy-based scheduling is achieved by adding a virtual event-triggered layer on top of a
time-triggered communication system. This virtual communication layer allows a higher flex-
ibility in message sizes and lower latencies than the underlying time-triggered system through
message preemption. The increased flexibility for both, timeslots and message lengths, can be
used in conjunction with authentication frameworks, allowing the transmission of large, infre-
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quent messages highly efficiently. Application layer messages can be scheduled event-triggered,
based on predefined policies such as priority-based scheduling, and guarantees for message de-
liveries can be given. Worst-case response times can be calculated for all messages and the
schedulability of the system can be easily verified.

The proposed approach is fully compatible with time-triggered communication systems and
can be used side-by-side on the same physical bus, without interference. Changes to and addi-
tion of new messages to the communication system are simple, as recomputation of the time-
triggered schedule can be avoided.

Policy-based scheduling has been implemented for the time-triggered FlexRay static seg-
ment. This is achieved by assigning slots to ECUs, instead of messages. Messages are then
scheduled per ECU at run-time, based on priority and arrival time. To integrate the policy-
based scheduling with existing FlexRay toolchains, standardized FIBEX input and output is
employed. Finally, the developed framework has been evaluated regarding bandwidth utiliza-
tion and WCRTs.

Organization of this chapter. This chapter is organized as follows. Section 5.2 gives an
overview over the existing literature on the combination of time- and event-triggered systems,
as well as scheduling for the FlexRay static and dynamic segment. Furthermore, the differences
of policy-based scheduling to all existing approaches are discussed. Section 5.3 introduces the
architecture of policy-based scheduling and discusses possible runtime scheduling algorithms.
In Section 5.4, a heuristic algorithm and an Integer Linear Program (ILP) approach to policy-
based scheduling for FlexRay are proposed. Section 5.5 presents several tests to evaluate the
performance of policy-based scheduling on FlexRay, in comparison to conventional scheduling
algorithms. Section 5.6 summarizes the proposed approach and concludes.

5.2 Related Work

In the following, an overview of existing time-triggered architectures and their approaches to
scheduling, is given. Additionally, timing analysis and scheduling algorithms for the static
and dynamic segment of conventional FlexRay are discussed. Other approaches for event-
triggered scheduling in TDMA systems are illustrated and differences to the proposed approach
are clarified.

Time-triggered architectures. A basic time-triggered architecture is presented in [84]. Based
on this time-triggered architecture, scheduling algorithms have been developed, allowing reli-
able and predictable transmission of data. Some of these approaches consider the message
transmission itself [41, 172], while others follow a holistic approach and view the message
transmissions in context with the message generating tasks [99]. All of these approaches employ
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fixed timeslots, as described in [84], and are thus limited in message lengths and asynchronous
scheduling capabilities.

FlexRay static segment. The analysis of time-triggered systems concerning response times
and scheduling has also been conducted for the time-triggered static segment of FlexRay. Mul-
tiple approaches have been proposed to schedule messages in the conventional FlexRay static
segment. Based on the AUTOSAR standard, [38] proposes a heuristic approach for schedu-
ling messages, maximizing the bandwidth utilization. This assumes, however, that all message
lengths equal the slot length and only one message is sent in every frame. The problem of mes-
sage fragmentation is addressed in [96]. There, a heuristic and an ILP are used to optimize the
bandwidth utilization in the form of a bin packing problem.

The optimization of message jitter and the number of frames used in the system is the
primary target in [150] and [151]. As a measurement for the efficiency of the approach, jitter
and bandwidth utilization are employed. For optimization of bandwidth, a Non-linear Integer
Program (NIP) is employed, while the jitter is optimized with an ILP.

A combination of task and message scheduling is addressed in [181]. As a measure for
efficiency, the control performance of an example system is used, incorporating latencies and
jitters.

FlexRay dynamic segment. In addition to the analysis of the FlexRay static segment, sche-
duling in the dynamic segment has been researched. The calculation of the WCRT for the
FlexRay dynamic segment, as proposed in [182], is highly complex. A scheduling approach
for the FlexRay dynamic segment is proposed in [149]. There, the required number of frame
IDs and the message jitter are to be minimized. An additional analysis of the FlexRay dynamic
segment has been presented in [118]. It considers cycle multiplexing as a method to further
reduce the number of required frame IDs. In contrast to the approaches above, this chapter fo-
cuses on the static segment and uses preemption for lower response times, as well as introduces
possibilities for multi-mode messages.

Event-based messages over TDMA. In [98], an event-triggered layer that is virtually placed
on top of the time-triggered architecture from [84] is described. The approach divides every time
slot into two segments for time- and event-triggered messages. This achieves a slightly higher
flexibility than a conventional time-triggered system, but assumes fixed message lengths. The
approach proposed in [16] adds arbitration points to every slot of the time-triggered protocol
in [83]. Based on these approaches, response time evaluations have been proposed in [124].
There, a set of parameters is proposed, allowing a good estimation of the worst- and best-case
response times for an event-triggered communication layer in a time-triggered system.

An approach to integrate event-triggered communication with the FlexRay static segment is
shown in [88]. However, this approach assumes one message per frame and a message length
equal to the frame size. Additionally, it is assumed that the message deadline is always equal to
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the interarrival time of the message. Interarrival times smaller than the length of the schedule are
not considered. This dependency leads to an inversion in design. The static segment needs to be
modeled after the requirements of the event-triggered layer, as both layers are not independent.
In case the parameters of the event-triggered layer are changed, the time-triggered layer needs
to be regenerated, or guarantees might be lost.

Hierarchical Scheduling. With the rising complexity of real-time systems, compositional
design becomes increasingly important. By dividing a system into subsystems and arranging
these in a scheduling hierarchy, the scheduling of such complex systems can be simplified. An
approach for hierarchical scheduling has been proposed in [27] and a comparison of different
hierarchical scheduling techniques is presented in [2]. In comparison to hierarchical scheduling,
policy-based scheduling does not require a scheduling hierarchy. The given communication
system is scheduled in the traditional, flat scheduling manner. In policy-based scheduling, the
time-triggered schedule is generated at design time, but filled with event-triggered messages at
runtime.

Security Integration. To integrate authentication into existing time-triggered systems, other
approaches could be used. By utilizing the existing fields in the header or footer of the time-
triggered slot, the required bandwidth needed for authentication could be reduced. An approach
to this has been presented in [180]. There, a truncated Cipher-based Message Authentication
Code (CMAC) is integrated with the Cyclic Redundancy Check (CRC) of the underlying com-
munication system. This ensures integrity of the message, but it can not easily be integrated with
the encryption of the message to ensure confidentiality. Furthermore, it does require adaptation
of the communication system to allow for the change of the CRC.

This work. This chapter presents an approach to flexibly schedule messages in a virtual event-
triggered layer on top of a time-triggered communication infrastructure. The virtual event-
triggered layer allows to transmit messages flexibly, while the underlying time-triggered com-
munication system allows us to guarantee message deadlines. In contrast to the work above,
this approach supports messages of any length, as well as multiple messages per slot. This
enables the implementation of security mechanisms requiring large and infrequent messages,
such as authentication frameworks (see Chapter 4). Furthermore, interarrival times of messages
can be chosen freely and multiple messages can be sent per schedule repetition. Oversampling
of messages is reduced and preemption can be utilized for faster response times. The proposed
approach offers flexibility, as messages can be changed easily, without the need for reconfig-
uration of the complete system. The FlexRay static segment has been used to implement the
approach and to verify its feasibility. Additionally, the system proposed in this chapter can be
used in parallel with a conventional FlexRay system, sharing the same physical bus, without
interference or the need for adaptation of the existing specification.
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5.3 Architecture

This section outlines how time- and event-triggered systems are integrated in policy-based
scheduling. While policy-based scheduling is applicable to time-triggered systems in general,
we use FlexRay terminology to describe our system. No definitions and parameters from the
FlexRay standard have been altered, thus achieving full compatibility to conventional FlexRay
systems. Instead, we reserve time slots in the static segment and assign these to ECUs. We
call the messages used to reserve a time slot in the static segment wrapper Protocol Data Units
(PDUs). In the proposed approach, a wrapper PDU always fills the static slot in its entirety.
These wrapper PDUs are coordinated by the communication layer introduced for policy-based
scheduling. This additional layer is logically placed between the application layer and the con-
ventional FlexRay communication layer of every ECU (see Figure 5.1).

At runtime, messages from the application layer can arrive at any point in time, i.e. event-
triggered, and the policy-based communication layer is sorting these messages into wrapper
PDUs and thus FlexRay static slots. This way, a virtual event-triggered layer is created on top
of the time-triggered FlexRay static segment. To reserve sufficient time slots for all messages
to be transmitted, the time-triggered schedule needs to be calculated, based on the message
parameters of the application layer. This calculation is described in Section 5.4. With this
calculation and the correct mapping of event-triggered messages to time slots, it can be ensured
that every deadline in the system is satisfied.

5.3.1 Runtime Scheduling Algorithm

In the following, the scheduling of messages into timeslots at runtime is explained. The addi-
tional communication layer is required to add application layer messages to slots of the static
segment. This is performed according to a fixed algorithm on the ECU at runtime. Many suit-
able scheduling algorithms are available in literature, such as First Come First Serve (FCFS),
Round Robin (RR), Shortest Message First (SMF), Priority-based, Multi-Level Queues and
Multi-Level Feedback Queues. Based on the requirements existing in vehicles, a suitable sche-
duling algorithm needs to be found.

In vehicles, some messages always have a higher priority than others. Consider an Anti-lock
Braking System (ABS) system versus a park distance sensor. Even when parking, the vehicle
brakes need to be able to react reliably. This makes schemes like FCFS, RR and SMF unsuit-
able. These schemes would not represent the priorities in vehicles accurately. As multi-level
feedback queues are also changing this priority behavior, they do not fulfill the requirements
for vehicles. A multi-level queue could be used if the individual queues are served in a strict
priority-based fashion. This, however, equals priority-based scheduling. Thus, the scheduling
of event-triggered messages to timeslots is chosen to be strictly priority-based with FCFS, if
two messages of the same priority are queued. The priorities for messages can be determined
in any fashion, as required by the user.
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For the application shown in the following, priorities are generated based on Earliest Dead-
line First (EDF) scheduling, with longer messages having higher priority, if two deadlines are
equal. The strict adherence to priorities in the policy-based scheduling allows for mixed criti-
cality applications to be implemented and to guarantee the delivery of all messages within their
required deadline.

5.3.2 Multi-Mode Applications

The proposed framework is designed such that different priorities per message can be consid-
ered at various times. This allows to integrate multi-mode applications for different situations
the vehicle experiences very efficiently. For example, authentication messages can be assigned
higher priority when the vehicle is not in use, to facilitate faster authentication. At startup, mes-
sage authorizations take precedence and once started, highest priority is given to safety-critical
real-time messages. The proposed approach allows to define multiple modes for different situ-
ations the vehicle experiences. These modes are required to be exclusive and non-overlapping.
The algorithm automatically selects the minimum set of messages required to transmit all data
without deadline violations. Due to the inherent flexibility of policy-based scheduling, this re-
sults in a smaller amount of messages for the overall schedule than in a conventional scheduling
approach where oversampling is required.

5.3.3 Wrapper PDUs

When placing application layer messages into wrapper PDUs and, consequently, into time slots,
the borders of time slots are factored out. The sum of all wrapper PDUs for one ECU appears as
one continuous communication channel to the application layer. This allows the transmission
of messages longer than the length of one static slot, e.g. for diagnosis or programming of
ECUs, by continuing messages in following timeslots. However, the loss of time slot boundaries
also leads to two issues. First, receiving ECUs can not identify separate messages anymore,
as there are no time slots or other start/end indicators for messages inside a wrapper PDU
(Segmentation). Second, the implicit addressing scheme which is inherent to TDMA slots is
lost (Addressing). Receiving ECUs have no possibility to identify which type of message is
transmitted or to which ECU a message is addressed. To solve these two issues, an additional
header is introduced to be transmitted with every application layer message. As this header
introduces overhead into the system, it needs to be as small as possible.

In the following, the issues are addressed and the fields of the message header are intro-
duced:

Segmentation. To distinguish two messages, a length field is introduced into the header. This
8 bits long field allows to specify the length of the following payload up to a maximum of
255 bytes. This header can be placed in multiple positions, such as in the beginning of every
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wrapper PDU, allowing a higher bandwidth efficiency by combining the headers of all included
messages. This placement, however, reduces flexibility, as all messages transmitted in one
wrapper PDU need to be known at the start of the wrapper PDU. Messages arriving late could
not be added. Placing the header in front of every application layer message (see Figure 5.3)
allows a higher flexibility, as high priority messages arriving late can still be added while the
slot transmission is in progress.

Addressing. In a time-triggered system, the assignment of messages to time slots also con-
tains an implicit addressing scheme. Due to the placement of application layer messages into
the continuous communication channel generated by wrapper PDUs, this implicit addressing
information is lost. In TDMA, every transmitting ECU knows where each message is to be
transmitted and each receiving ECU knows how to interpret a received message in a timeslot,
as only one type of message is allowed for transmission at any one position in the schedule. To
compensate for this, a message type field is introduced into the header of every application layer
message. This is a 16-bit field, describing the type of the message. The addressing is similar
to the approach as it is done in the FlexRay dynamic segment. A message type field of 16-bit
allows 65536 different message types. This amount is sufficient for most FlexRay communi-
cation. It is the same value as used in the FlexRay dynamic segment. With the introduction of
this field, the addressing information is restored and the receiving ECUs are able to process the
message.

In addition to the header in front of every application layer message, a header of 8 bits
length, called preemption indicator (PI), is added to every wrapper PDU. This header allows
to implement preemption in a time-triggered system. In case a high priority message arrives,
while a low priority message is transmitting, the high priority message may interrupt the lower
priority message at the beginning of the next timeslot. The preemption indicator is used to
signal the number of preempting messages at the beginning of a timeslot. The preempting mes-
sages are transmitted first, afterwards, the lower priority message is continued as illustrated in
Figure 5.3. This work does not consider non-preemptive scheduling. As preemptive scheduling
yields significantly lower latencies at the cost of only minimal overheads in the waiting queues
of ECUs and slightly less net bandwidth on the bus, the non-preemptive case does not add any
advantages.

5.4 Design-Time Scheduling

In the following, a scheduling algorithm is developed which allows the transmission of ap-
plication layer messages in event-triggered fashion. The scheduling algorithm creates a time-
triggered schedule for the policy-based communication layer. This is based on the application
layer messages to be scheduled in the policy-based approach.



122 Chapter 5. Flexible and Reliable Message Scheduling in FlexRay

virtual communication layer:

m1 m3...m2 m2P
I

m1

m3

t

m2

message arrival times:

t

length message type

hhh

header:

P
I

Figure 5.3: Preemptive scheduling of application layer messages for the proposed approach with con-
tinuous virtual communication channel. The arrows mark arrivals of messages. Message m3 arrives
after message m2, but the priority of m3 is greater than the priority of m2. The messages do not need to
be placed in consecutive slots.

For the time-triggered layer, a schedule needs to be generated, incorporating all wrapper
PDUs. This scheduling is performed at time of implementation. Two approaches have been
developed for this contribution, a heuristic and an ILP. While it is well established to use a
heuristic for FlexRay scheduling, the developed ILP shall serve as a benchmark for the heuris-
tic, showing the optimal solution to the given problem. Both approaches are described in the
following.

For both approaches, heuristic and ILP, minor differences exist for the different FlexRay
versions. While FlexRay 2.1A requires that each slot in every cycle contains the same message
type, FlexRay 3.0.1 allows to assign different message types to slots in different cycles (see
Figure 5.4). The developed algorithms account for these differences.

In the following, the terms message and application layer message refer to a message de-
scriptor, including length, period and deadline, not a specific message with content to be sent
on the bus.

The expected input to the scheduler is a set of application layer messages to be scheduled.
Additionally, the parameters of the schedule need to be defined. These include the number of
static slots, the slot size, the number of cycles and the cycle length, among others. A reservation
for predefined time-triggered messages, which are transmitted within the conventional FlexRay
static segment can be added as well. The slots occupied by these messages will not be used to
schedule wrapper PDUs, thus achieving coexistence with conventional FlexRay.
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Figure 5.4: Comparison of FlexRay 2.1A and 3.0.1 scheduling. For FlexRay 2.1A we only consider one
cycle to assign an ECU. For FlexRay 3.0.1 the whole schedule is considered, as multiple ECUs can share
one slot. The basis of assignment is one frame.

The deadline of every message is used as a priority indicator, with a shorter deadline equal-
ing a higher priority. This ensures that all deadlines are satisfied, as the message queues are
ordered along message deadlines.

The set M of application layer messages m to be scheduled is described by the following
tuple:

m = (N, s,R, lm, tmp , t
m
d ),m ∈M (5.1)

with

• N : name of m, a unique string in the FlexRay cluster,

• s: sender, name of the ECU sending m,

• R: receivers, list of receiving ECUs,

• lm: length of m in bytes,

• tmp : period of m in milliseconds,

• tmd : deadline of m in milliseconds.
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All messages are sent and received by an ECU e, with e being part of the set of all ECUs in the
cluster, e ∈ E.
A schedule is defined by the following parameters:

• c: number of cycles, required,

• n: number of static slots per cycle, required,

• tdc: duration of cycle in milliseconds, required,

• tds: duration of static slot in milliseconds, required,

• b: length of one static slot in bytes, required,

• Mp: set of predefined messages, optional.

Based on these inputs, both scheduling algorithms, heuristic and ILP, described in the fol-
lowing, calculate an assignment of static slots to ECUs. To ensure compatibility to conventional
FlexRay, a minimal set of placeholder messages is generated from these assignments that is used
to reserve slots in the FlexRay schedule. These place holder messages are the described wrapper
PDUs.

5.4.1 Heuristic

This section describes the heuristic approach to policy-based message scheduling. An algorithm
has been developed, using the application layer messages and schedule parameters as input
to calculate the assignment of static slots to ECUs. The required number of slots per cycle
and frames for the complete schedule are determined for FlexRay 2.1A and FlexRay 3.0.1,
respectively. The heuristic processes the input data in two steps:

1. slot distance calculation

2. slot allocation

In the first step, the maximum distance between two slots for every application layer message of
an ECU is calculated, such that the deadline for every message is met. The second step allocates
all slots into the schedule with the given parameters, adjusting message and slot distances, such
that all messages fit the schedule.

1) Slot distance calculation. The first part of the heuristic calculates the required number of
slots and frames for the schedule, based on the bandwidth requirements of each ECU. The band-
width is determined by the periods, sizes and lengths of messages, as well as their deadlines. A
value diste is calculated for every ECU e, describing the distance two consecutive slots can be
allocated apart, such that all bandwidth and deadline requirements are fulfilled.

The upper bound of the WCRT rdiste(m) for a message in terms of slot lengths needs to be
calculated. This calculation is based on the distance between two slots (see Equation 5.6) for
an ECU and the WCRT rhp(m) of all higher priority messages on this ECU:
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∀e ∈ E,∀m ∈Me : rdiste(m) = diste + (diste · rhp(m)) (5.2)

The utilization of all higher priority messages describes the delay rhp(m) caused to a mes-
sage and is based on the deadline tmd of message m, as well as the period tm̃p and the length lm̃

of all higher priority messages m̃ of message m. This delay is normalized to the slot length b:

rhp(m) =
1

b
·
( ∑

m̃∈hp(m)

(
tmd
tm̃p
· lm̃
))

(5.3)

The response time rdiste(m) for every message m needs to be shorter than the deadline tmd
and the distance diste between two slots needs to be lower than the maximum distance between
two slots for one ECU:

rdiste(m) ≤ tmd (5.4)

diste ≤ diste,max (5.5)

The maximum distance is computed from the available number of slots n in a cycle and the
required number of slots sc,e for an ECU e.

diste,max =
n

sc,e
(5.6)

The required number of slots sc,e is determined by the overall number of slots slotse for one
ECU, divided by the number of cycles c. As only complete slots can be allocated, this number
needs to be an integer value. To ensure a sufficient number of slots in the cycle, this value is
rounded to the next higher integer number:

sc,e =

⌈
slotse
c

⌉
(5.7)

The required number of slots per ECU slotse is based on the duration of the schedule tdc · c,
the periods tmp of all messages m ∈Me and the lengths lm of these messages:

slotse =
1

b
·
∑
m∈Me

tdc · c
tmp
· lm (5.8)

This describes the bandwidth requirement of the ECU. The bandwidth is normalized to one
slot length b.

Based on these equations, the maximum distance between two consecutive slots of one
ECU is defined by the maximum distance that satisfies the deadline requirement of all messages
m ∈Me for this ECU:

arg max
diste∈N

{rdiste(m) ≤ tmd ∀m ∈Me} (5.9)
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2) Slot allocation. After the distances between messages have been determined for each ECU,
the allocation of slots is described in the following, as depicted in Figure 5.5 for FlexRay 2.1A.
These steps are executed for all ECUs in ascending order of their previously calculated slot
distance diste. The slot allocation starts with the first free slot in the cycle (see Figure 5.5
(1)). Based on this slot, all other slots are allocated in distance diste apart (2). This placement
also adjusts for the dynamic segment, Network Idle Time (NIT) and symbol window. The
slot allocation completes when sufficient slots are placed throughout the complete schedule
in distance diste (3). This also considers the distance between the last slot and the first slot of
every schedule to adjust for the final dynamic segment, NIT and symbol window. Should any of
these steps fail for any ECU, because the shortest available slot distance is too long, a deadline
violation may occur and the system is considered not schedulable (4). In case all steps succeed,
the algorithm terminates with the correctly allocated results (5).

The slot allocation for FlexRay 3.0.1 is performed similarly to the calculations for FlexRay
2.1A. In contrast to FlexRay 2.1A, FlexRay 3.0.1 supports the assignment of identical slots in
different cycles to different ECUs (see Figure 5.4). This allows more flexibility in allocating
the slots. To accommodate this flexibility, the algorithm has been adjusted to calculate the slots
over one complete schedule (c · n slots), instead of one cycle (n slots). This results in a few
additional checks to cover the dynamic segment, NIT and symbol window at the end of every
cycle. As FlexRay 3.0.1 does not require the assignment of a slot in every cycle, diste might be
longer than the shortest deadline for an ECU. To accommodate this, the algorithm continuously
checks the deadline constraint when allocating slots. Additionally, the end condition (see Figure
5.5 (3)) has been adjusted to incorporate a full schedule instead of one cycle.

5.4.2 Integer Linear Program (ILP)

In the following, an ILP formulation which determines an optimal slot to sender, or frame to
sender, assignment for FlexRay 2.1A or 3.0.1, respectively, is presented. While an ILP allows
to find the optimal solution to a given problem, it does not scale well. Thus, the proposed ILP
shall be used as a benchmark, evaluating the performance of the heuristic, wherever possible.

The ILP determines a schedule with minimal bandwidth utilization. The ILP approach is
based on the following constants and variables:

• nall =
⌈
tdc
tds

⌉
: theoretical number of slots fitting in one cycle including the dynamic seg-

ment.

• Pe: set containing all message periods tmp for an ECU e.

• xk,e: binary variable indicating if slot/frame k is occupied by ECU e (1) or not (0).

To support both FlexRay 2.1A and 3.0.1, the constant ntot is introduced, defining the number
of frames the ILP considers. For FlexRay 2.1A ntot equals the number of slots for one cycle, as
slots might not be shared between senders:
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Figure 5.5: FlexRay 2.1A scheduling algorithm for slot allocation. Based on the initial slot found in
the first part of the algorithm, other slots are allocated a maximum of diste slots apart. The function
isFree(x) determines if slot x is in use by another ECU and the function start(x) returns the start time of
slot x. These calculations are performed for every ECU.

ntot = nall (5.10)

For FlexRay 3.0.1 ntot equals the number of frames for all cycles allowing to divide the slot
among multiple ECUs:

ntot = c · nall (5.11)

The objective of the ILP formulation is to minimize the number of occupied frames:

min
∑
∀e∈E

∑
k∈{0,1,..,ntot−1}

xk,e (5.12)

For a certain message period tmp , a minimal number of slots has to be assigned to fulfill the
bandwidth and deadline requirements of all messages m with periods of tmp . This is considered
for every message m of every ECU e in Equation 5.13. The number of slots required is deter-
mined by the length of the message lm, normalized to one slot length b. The right-hand side
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also considers preemption of messages m by higher priority messages m̃ with a deadline tm̃p
shorter than the message deadline tmp . The deadline requirement is ensured on the left-hand side
by placing at least one slot within every period tmp . To ensure that the first and the last frame
also keep the maximal distance, the modulo operation % ensures that also the first element in
the schedule is considered:

∀e ∈ E, i ∈ {0, 1, .., ntot − 1}, tmp ∈ Pe:∑
k∈{i,...,i+

⌊
tmp
tds

⌋
−1}

xk%ntot,e ≥

⌈ ∑
m̃∈{m̃|tm̃p ≤tmp ,m̃∈Me}

tmp
tm̃p
· l
m

b

⌉ (5.13)

For all ECUs, no frames shall be placed outside the static segment:

∀e ∈ E, k ∈ {0, 1, .., ntot − 1},∃k%nall > n:

xk,e = 0 (5.14)

For every frame in the schedule, it needs to be ensured that two ECUs cannot occupy the
same frame:

k ∈ {0, 1, .., ntot − 1},∃k%nall < n: ∑
∀e∈E

xk,e = 1 (5.15)

The solution of the ILP delivers the assignment of slots and frames to ECUs for FlexRay
2.1A and FlexRay 3.0.1, respectively. This is used to reserve timeslots in the FlexRay static
segment, in the form of wrapper PDUs.

5.5 Experimental Results

In this section, the policy-based scheduling is evaluated and compared against the conventional
approach from [96]. For this purpose, a FlexRay scheduling framework, including the policy-
based heuristic and ILP scheduling, has been implemented in Java, allowing to compare the
scheduling algorithms to the framework from [96]. The developed scheduling framework is
connected to the development toolchain via Field Bus Exchange Format (FIBEX). FIBEX is
a standardized data format for the exchange of data related to bus systems between tools. It
is based on Extensible Markup Language (XML) and is the standard data exchange format for
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FlexRay systems. The proposed system supports import and export for FIBEX versions 2.0.1
and 3.1.

To evaluate the performance of the developed algorithms for FlexRay, the input parameters
are varied and the output is surveyed. The performance is measured in terms of bandwidth and
WCRT. Additionally, the computational performance of the different approaches is evaluated.
The input to all algorithms consists of externally generated and verified FlexRay parameters,
as well as a set of messages to be scheduled. To accommodate for statistical variations in the
message sets, multiple sets have been generated for every test. The FlexRay system is defined
by a cycle duration tdc of 5ms, 62 static slots per cycle (n), a slot size b of 42 bytes and 64 cycles
per schedule (c). The set of messages is generated randomly from a set of given parameters.
The parameters are varied for the different testcases and described below.

The metrics for comparison are the average number of slots and frames of the scheduling
runs, for FlexRay 2.1A and FlexRay 3.0.1, respectively. As the number of slots and frames
represent the bus utilization, a lower number of slots and frames is better. In addition to the
average number of slots and frames, error margins are given in the form of the standard deviation
from the average value over the set of generated schedules.

It is important to note that the conventional scheduling approach assumes an AUTOSAR
architecture, requiring one byte at the beginning of every slot for administrative information
and is thus working on a slot length of b = 41 bytes. Similarly, the policy-based approach
requires one byte as preemption indicator and thus also works with b = 41 bytes available for
payload.

For all testcases, multi-mode messages have been employed. The messages have been gen-
erated such that 50% of all messages in a testcase have two modes. For all multi-mode mes-
sages, the period and size of a message may vary for the modes. However, it is guaranteed that
a longer or equal period always contains a longer or equal message size.

5.5.1 Size Variations

To determine the performance of policy-based message scheduling under different message
lengths, the average size of all messages in the system is varied. This is achieved by adjusting
the distribution of message sizes, starting from the distribution used in [96]. The test is repeated
multiple times, as the set of messages is generated in a statistical process. The results for this
test are shown in Figure 5.6. The size distributions of all messages in the system are varied and
sorted by increasing average message size. The last two sets of messages include messages with
length longer than one slot. These messages are important to facilitate security in the commu-
nication system. As shown in Chapter 4, authentication messages are very long, exceeding the
slot lengths specified for most time-triggered systems. By utilizing the virtual communication
layer, such messages can be scheduled on FlexRay, allowing the implementation of authentica-
tion frameworks over time-triggered systems, such as FlexRay. The message length used here
is 64 bytes, the minimum length of an Ethernet frame.
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Figure 5.6: Number of slots and frames required for scheduling with FlexRay 2.1A and FlexRay 3.0.1
for different average message sizes. The system contains 100 different messages and 5 ECUs.

As it can be seen from Figure 5.6, the conventional scheduling fails to process messages
longer than one slot length, thus failing to schedule the given sets of messages. All shown
testcases with size variations are based on 58 different periods. Policy-based scheduling can
schedule any message length, independent from the slot length in the static segment.

FlexRay 2.1A. As can be seen in Figure 5.6(a), for smaller message sizes, the policy-based
scheduling performance about matches the performance of conventional scheduling. For larger
message sizes of more than one slot length, the conventional scheduling fails to perform its task,
while the policy-based approach can continue to schedule messages. The minimum difference
between the two approaches is 2%, while the maximum difference is 8.7%. However, for larger
message sizes, a comparison is not possible, as the conventional algorithm fails to schedule
these messages. This is due to the fact that in a conventional FlexRay scheduling algorithm,
the maximum allowed message size is equal to the slot length. By contrast, the policy-based
message scheduling can schedule messages of arbitrary lengths. While the FlexRay system is
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not fully utilized, the policy-based scheduling will always be able to accommodate messages,
even if the longest message length is larger than one slot length.

FlexRay 3.0.1. Figure 5.6(b) shows the scheduling results for FlexRay 3.0.1. For smaller
message sizes, the policy-based scheduling performance almost matches the conventional sche-
duling. For larger message sizes of more than one slot length, the conventional scheduling fails
to find a solution, while the policy-based approach can continue to schedule messages.

Due to the structure of FlexRay 3.0.1, being able to assign frames instead of slots, the com-
plexity of the problem size increases significantly. The increase in complexity of the problem
leads to an exponential growth of the constraints and variables in the ILP. Thus, the compar-
ison for FlexRay 3.0.1 is based on the heuristic approach for conventional and policy-based
FlexRay, as the ILPs for both approaches can not be calculated with reasonable resources (see
Section 5.5.4). For small messages, the performance difference between the two approaches
varies between 0.4% and 13%. Additionally, like in FlexRay 2.1A, the conventional approach
is not capable of scheduling messages larger than one slot size, leaving the larger message sets
as not schedulable. Again, the policy-based approach can utilize its continuous communication
channel to also schedule messages with length longer than one slot and thus is able to schedule
all given message sets.

5.5.2 Latency

Besides the higher flexibility in message lengths, the policy-based scheduling also allows lower
WCRTs for all messages in the system than a purely time-triggered system. To verify policy-
based scheduling with regard to deadlines and to calculate WCRTs, we employ Real-Time
Calculus (RTC) [165]. RTC is an extension of network calculus, tailored to real-time systems
[92]. Similar to network calculus, real-time calculus allows to compute the arrival and service
curves for a communication system. Based on the Modular Performance Analysis [176], im-
plemented in the RTC Toolbox, the proposed approach is analyzed, to verify that the deadlines
of all messages are met. The service and arrival curves are generated from the slot and frame
assignment determined per ECU by the proposed algorithm and the set of messages supplied
by the user, respectively. Based on the slot and frame assignment from the proposed algorithm,
RTC calculates the WCRTs for all messages on all ECUs. These WCRTs are compared to the
message deadlines. This way, it can be ensured that all messages meet their deadlines at any
point in time.

Additionally, the WCRTs are compared to those of a conventional FlexRay system. The
results for FlexRay 2.1A and FlexRay 3.0.1 are shown in Figure 5.7. In conventional FlexRay
scheduling, a message can only be transmitted at a fixed place in the TDMA scheme. Thus, the
WCRT of any message is equal to its period, or the oversampling required by the scheduling al-
gorithm. As we are using a set of periods which does not require oversampling, the WCRTs for
conventional FlexRay are equal to the message periods, which in turn, are equal to the message
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Figure 5.7: Exemplary worst-case response time (WCRT) analysis for FlexRay 2.1A and FlexRay 3.0.1
for heuristic scheduling of policy-based approach and conventional scheduling. The policy-based sche-
duling shows a significant improvement in latencies for both FlexRay versions and all messages in the
system.

deadlines, for both heuristic and ILP. From Figure 5.7(a), it can be seen that in policy-based
scheduling, the latencies for all messages are significantly shorter than the deadlines achievable
in the conventional scheduling approach. This holds for all messages on all ECUs, regardless of
their size or deadline. This is due to the flexible EDF scheduling and the implemented preemp-
tion capabilities. As messages are not bound to timeslots, far lower worst-case latencies can be
achieved. Messages with short deadlines always have a higher priority and can be transmitted
first, while messages with longer deadlines are queued. As slots can be allocated more flexibly
in FlexRay 3.0.1, compared to FlexRay 2.1A, the differences in latency between policy-based
scheduling and conventional scheduling are smaller (see Figure 5.7(b)). However, in absolute
terms, improvements of policy-based scheduling over conventional FlexRay are still significant,
especially for longer message deadlines. Figure 5.7 omits the ILP approach to policy-based
scheduling. The results are in the same range as the results for the heuristic approach.
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5.5.3 Period Variations

The second relevant parameter of the message distributions is the set of periods used for the
message generation. A higher set of periods allows more flexibility, as the application devel-
oper does not require to adjust his application to the communication system, but can freely
schedule the application, as required. This can make control algorithms and networks more ef-
ficient, as less oversampling and messages are required to reach stable operation. Furthermore,
it allows the efficient implementation of infrequent messages, such as used in security frame-
works. Authentication and authorization messages are transmitted with a very low frequency,
with message periods in the range of days to months. Without policy-based scheduling, these
messages would require extreme oversampling, leading to low efficiency of the bus system. The
size distribution used for this testcase is taken from [96]. The number of periods has been in-
creased for different message sets, to verify the influence of this parameter on the performance
of policy-based scheduling, compared to conventional scheduling.

Conventional FlexRay is optimized for a set of periods defined in the FlexRay standard.
This set has been used as a starting point and further periods have been added for other sets.
For a cycle time tdc of 5ms, the basic set of periods is defined as 5ms, 10ms, 20ms, 40ms,
80ms, 160ms, 320ms. All periods are integer multiples of one cycle length, as the conventional
scheduling algorithm, in contrast to the policy-based scheduling, is not capable of scheduling
fraction periods. The results for this test are shown in Figure 5.8 and discussed in the following.

FlexRay 2.1A. When comparing the policy-based approach to the conventional FlexRay sche-
duling, the performance for a low number of periods is expectedly lower, as the conventional
algorithm is optimized for this application (see Figure 5.8(a)). However, when crossing a thresh-
old of 30 different periods in the system, the policy-based approach performs only slightly worse
than the conventional algorithm. Although having a smaller net bandwidth, due to overhead in
the message headers, performance is nearly equal for a high amount of different periods. It is
to note that this testcase is limited to integer periods, as fraction periods cannot be processed
by the conventional scheduling algorithm and thus have no basis for comparison. This limits
the policy-based approach in its performance. As it is common in combined time- and event-
triggered systems, the policy-based approach is a trade-off between the bus utilization on the
one hand and lower latencies and increased flexibility, manifesting, e.g., in larger messages, on
the other.

FlexRay 3.0.1. Due to the complexity of computations, this comparison focuses on the heuris-
tic approaches of conventional and policy-based scheduling. The ILP for policy-based schedu-
ling could only be performed for the first three sets of messages, which have a lower count of
periods.

Figure 5.8(b) shows the comparison between the two approaches for FlexRay 3.0.1. The
more flexible slot assignment in FlexRay 3.0.1 allows the policy-based scheduling an increase
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Figure 5.8: Number of slots and frames required for scheduling with FlexRay 2.1A and FlexRay 3.0.1
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in performance, compared to FlexRay 2.1A. The difference in performance between the con-
ventional and policy-based scheduling falls from 19.1% for the set of periods optimized for
conventional FlexRay to 5.7% for a larger selection of periods. These testcases show the po-
tential of the policy-based algorithm. With policy-based scheduling, the user can select any
set of periods and is not limited by the communication system. Even non-integer periods are
supported by policy-based scheduling, which is not shown here for the sake of comparison to
conventional FlexRay.

The flexibility gained by employing the policy-based scheduling approach reduces the de-
sign effort for a communication system significantly, as it can be adjusted to the applications.
Additionally, the latency is lowered and larger messages sizes can be transmitted. This al-
lows the efficient integration of security frameworks, such as LASAN, the authentication and
authorization framework proposed in Chapter 4. The large and infrequent messages can be eas-
ily accommodated with policy-based scheduling, while efficient transmission in conventional
time-triggered systems is impossible. Policy-based scheduling can also be used in prototyping,
when messages in a system change often, as it is not required to always generate a new TDMA
schedule, whenever one single message changes.

5.5.4 Computational Performance

As the runtime scheduling of application layer messages to the virtual communication layer is
limited to a priority queue, the computational and memory overhead on the ECUs at runtime is
minimal. By contrast, the design time scheduling solves the algorithms presented in the previ-
ous sections and exhibits varying performance, depending on the FlexRay version and testcase
involved. The heuristic approach to policy-based scheduling achieves results in a short amount
of time, with the given number of messages per cluster. A FlexRay 2.1A cluster, as shown in
this section, can be calculated in about 10 milliseconds, a FlexRay 3.0.1 cluster requires 570
milliseconds on average. The computations have been performed on a workstation with an Intel
Xeon quad-core processor with 3.2 GHz and a 64-Bit Java Virtual Machine.

As solver for all policy-based ILPs, SAT4J has been employed [91]. The runtime of the ILP
has been limited to 15 minutes for one FlexRay cluster. In case no solution is found within this
time frame, the results have been discarded. Due to the higher complexity and exponentially
higher number of variables in the ILP for FlexRay 3.0.1 computations, the requirements, espe-
cially on the available main memory, are much higher. A high performance computing cluster
has been employed to solve these computations, including 4 nodes with 2 Intel Xeon octa-core
processors with 2.6 GHz each. The nodes are networked over a 60 Gbps InfiniBand connection
and each node contains 192 GB of main memory, allowing to parallelize the computations and
boost the main memory available per ILP. We allowed up to 22 GB of main memory for each
ILP to achieve the results in this section. This sets the bound for scheduling at 21 periods, as
shown in Figure 5.8(b). To schedule a larger set of periods, a larger amount of main memory
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per ILP process is required. While the performance requirement for the ILP seems high, it is
to note that the ILP is only used as a benchmark in this chapter. As shown, the performance
of the developed heuristic almost matches the performance of the ILP. Thus, in a production
environment, the heuristic would be used, being able to process FlexRay clusters on standard
computer equipment within milliseconds.

5.6 Concluding Remarks and Future Work

This chapter proposes a policy-based scheduling mechanism for integration of a virtual event-
triggered communication layer into time-triggered communication systems. The policy-based
layer is designed to provide asynchronous message transmissions with preemption. In this
context, simplified verification of worst-case response times (WCRT) for application layer
messages is enabled. A set of algorithms is proposed to schedule policy-based messages in
time-triggered systems while ensuring coexistence with existing TDMA communication. An
implementation to integrate the proposed approach into the FlexRay static segment has been
developed. Based on this implementation, multiple tests have been carried out to evaluate the
performance of policy-based FlexRay. The results illustrate a higher flexibility in message size
and period selection as well as lower end-to-end latencies with an acceptable trade-off in band-
width utilization. These elements allow the implementation of security frameworks such as
LASAN (see Chapter 4) over time-triggered communication systems, such as FlexRay and thus
enable legacy compatibility for in-vehicle security.

Future work comprises the integration with the proposed security framework LASAN. The
simulator developed in Chapter 4 shall be extended with FlexRay and policy-based schedu-
ling to allow for simulation of LASAN over policy-based FlexRay. Furthermore, the integra-
tion of Audio Video Bridging (AVB) and Time-Sensitive Networking (TSN) with policy-based
scheduling for seamless combination of Ethernet and FlexRay bus systems in future in-vehicle
communication architectures is targeted.



6
Concluding Remarks

Current automotive E/E architectures have not been designed with security in mind. The in-
creasing amount of connectivity inside and between vehicles and the Internet in recent years
made such approaches necessary to ensure the safety of passengers. While gateways to external
networks are often protected, internal networks are seldom separated in terms of security. Au-
thentication, authorization and encryption are typically not used and often cannot be employed
due to the restriction of the underlying communication systems. Due to the typical bus structure
of internal networks, an attacker has full access to all functions, once he penetrated the external
gateway. The influence across components is especially high in a bus structure, as all messages
could be sent and received by all communication participants. Evaluation this influence and
quantifying security in automotive systems is thus not trivial.

While approaches to ensure security in similar areas exist, the combination of low computa-
tional power, high security and real-time requirements, influence on safety, and cost are unique
in the automotive domain. Especially the influence on safety is important, as it can lead to loss
of life in the worst case, e.g. when a vehicle is under attack. A security mechanism exceeding
the real-time requirements of the vehicle, can lead to similar consequences. While much work
has been performed on securing external interfaces and connections with firewalls and gateway
systems, the internal vehicle networks have not received the required attention.

In this thesis, multiple approaches to analysis and design of security in automotive net-
works are presented. Based on the above requirements, this thesis proposes an analysis mech-
anisms, allowing to determine the security of in-vehicle systems, as well as an authentication
and authorization framework, allowing to efficiently secure the internal communication. Fur-
thermore, addressing the long lifetime of vehicles, a method to integrate security into existing
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time-triggered vehicle networks, such as FlexRay, is introduced. These main results for each
approach are summarized in the following.

Motivated by the lack of existing security evaluation mechanisms for automotive communi-
cation system, Security Analysis for Automotive Networks (SAAN) proposes to use probabilis-
tic model checking to evaluate the security of automotive architectures. This evaluation is based
on the security assessment of individual components and the interconnections of these compo-
nents in the form of an architecture. Based on the architecture, a Continuous-Time Markov
Chain (CTMC) is synthesized. This CTMC is annotated with the component security scores.
Together with a property, defining what part of the architecture is to be analyzed, the model
is passed to a probabilistic model checker. The results of the model checking show security
aspects of components under the consideration of the complete architecture, such as the time
an Electronic Control Unit (ECU) is exploitable. To limit the state space explosion common
to model checking, this thesis proposes a model reduction step as part of the model synthesis.
This model reduction is based on the specific behavior of automotive communication systems,
defined as rules. These rules can reduce the number of states, as well as eliminate unwanted
transitions. This leads to a speed-up in the model checking of up to three orders of magnitude.
Thus, the model checking can be applied also for larger functions, making it possible to check
the security on subsystem level.

While the knowledge of security at design time is important for the network structure, se-
curing traffic at runtime is of similar importance. Authentication frameworks are paramount
for this task. Authentication and authorization is required to ensure that every device is who it
pretends to be and that only permitted messages are sent. Furthermore, these frameworks can
be used to exchange keys securely without any prior knowledge, a prerequisite for encryption of
messages. This thesis proposes Lightweight Authentication for Secure Automotive Networks
(LASAN), allowing authentication of devices and authorization of messages without affecting
the real-time behavior of messages. LASAN is designed for the use in automotive networks.
Specifically, the fact that automotive architectures are fixed and only minor changes occur at
runtime can be used to optimize existing protocols and reduce message sizes for the use in the
automotive domain. This reduces the bandwidth and computation overhead required for tra-
ditional authentication frameworks to a minimum. Splitting authentication and authorization,
and with this asymmetric and symmetric cryptographic operations, increases worst-case re-
sponse times further. Evaluations with a newly developed open source simulator for automotive
networks show improvements of two to three orders of magnitude over existing frameworks.
Additionally, the integration of LASAN with features such as Over-The-Air (OTA) updates and
ECU replacement is analyzed. This is important to ensure end-to-end security. The lack of such
integration would jeopardize the overall security of the vehicle.

Despite all optimizations, security mechanisms, such as authentication frameworks, still
require a large amount of bandwidth, as well as large message sizes. These bandwidth and
message requirements are typically less of a problem in upcoming network technologies, such
as Controller Area Network (CAN) Flexible Data-Rate (FD) or Automotive Ethernet. In legacy
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networks, however, implementation can be challenging. Especially in time-triggered networks,
such as FlexRay, the assignment of bandwidth to devices is strict to ensure real-time behavior.
This thesis proposes to introduce a virtual communication layer into time-triggered networks,
adding flexibility to message transmissions. This policy-based message scheduling allows to
reduce the cohesion between messages and time slots, while maintaining or even improving
worst-case response times. Furthermore, message lengths are no longer limited by the under-
lying time slots, thus allowing the efficient implementation of security mechanisms, without
interference with real-time traffic. It also improves security of conventional messages by in-
creasing the length of encrypted messages and thus hardening the system against brute-force
attacks. When employing policy-based scheduling for FlexRay, this thesis shows a reduction of
message latencies by nearly one order of magnitude while significantly increasing flexibility in
message periods and lengths.

The three approaches to security shown in this thesis are closely linked and form the basis
for security in automotive architectures. A flexible message transmission scheme is required to
be able to transmit long messages, such as authentication and authorization messages. Enabled
on existing and new communication systems, the authentication framework LASAN allows to
secure a vehicle network over the complete lifetime of the vehicle. To quantify the security im-
pact by authentication frameworks, such as LASAN, as well as the impact of single components
on the architecture, SAAN has been developed. These aspects allow to ensure the security of
automotive networks across the complete life cycle of the vehicle. In terms of security, tight
integration is of utmost importance, both across time, as well as functions. This thesis presents
such approaches.

6.1 Future Work

The approaches to secure automotive E/E architectures in this thesis can only form an initial
step into the large area of automotive systems security. Further work is required to ensure the
security of automotive architectures and their components. One of the major tasks, both in terms
of time and effort, is the standardization of any proposed approach. Only through standardized
approaches, it is possible to avoid custom, potentially insecure solutions and enable the clean in-
tegration of thoroughly tested approaches. Standardization further fosters widespread adoption
of approaches. Thus, it forms the basis of future automotive security solutions.

Furthermore, integration of security is a major challenge. As shown in this thesis, the im-
plications of security mechanisms on real-time behavior and thus, safety-critical behavior of
the vehicle, are significant. Integration from the start is thus of high importance. This includes
secure coding standards for software in vehicles, a combined safety and security analysis, and
control algorithm design incorporating the specifics of security. Some of the integration as-
pects and their influence on safety-critical systems have been demonstrated in this thesis. This
demonstrates that security needs to be seen as a holistic concept in vehicles.
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Future secure automotive architectures will also need to include maintenance. While main-
taining software is common in many areas of consumer electronics, it is a relatively new field in
the automotive domain. Yet, it is highly necessary, especially in terms of security. Even in the
most secure systems, security flaws are only discovered over time. The option to patch such se-
curity flaws in an efficient manner is paramount for a system ensuring the safety of passengers.
Considering the long lifetimes of vehicles on the road increases this demand for timely updates,
at least of the security functionality.

In addition to the concerns above, applying to every aspect of the automotive architecture,
specifics exist for the individual components. This thesis focuses on the security of the messages
and networks in the architecture. Additional work is required in both analysis and design of
ECUs. The approaches proposed in this thesis rely on the software on ECUs to be secure. This
needs to be ensured with secure (key) storage, secure execution environments, secure boot, etc.
Similar to the approaches in this thesis, such approaches exist, but typically do not consider the
specifics of automotive networks. Thus, these approaches need to be evaluated and potentially
new approaches will be required.

The underlying aspects of encryption also deserve additional attention. This thesis assumes
encryption and signing mechanisms as known from the automotive domain. As these are gener-
ally considered to be secure, the focus can be on other aspects, such as real-time behavior. How-
ever, with lightweight algorithms, targeted towards the automotive domain, the performance of
any security measure can be increased significantly. While other algorithms exist, these need
to be profiled and evaluated for the use in the automotive domain. Specifically, the influence of
small amounts of largely repetitive control data and real-time requirements in control systems
pose large challenges to the security algorithms.

Last but not least, the systems designed and constructed, as well as the systems currently on
the road, need to be tested. The cryptoanalysis of the separate components of vehicles is largely
a manual task. With the increasing amount of interconnections among vehicles, concepts from
the domain of design automation can help to reduce the cryptoanalysis of existing systems.
Frameworks are required to analyze vehicles, architectures, ECUs, but also maintenance servers
and backends in an automated fashion. This area will gain significant focus in the future, similar
to the cryptoanalysis existing for consumer devices today. Such efforts in security assessment
could mount into a rating system, similar to vehicle safety ratings existing already today.

Besides these technical aspects, large amounts of work are required on the legal and social
aspects of vehicle security. Several questions come to mind, e.g.:

• Who is liable in case of a crash, caused by an attack?

• What is required to proof an attack?

• How does the security (rating) of vehicles impact brand recognition?

• Who owns the software in vehicles, is allowed access and alterations?
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• What happens to personal data (driving logs, speech recognition data, etc.) generated in
vehicles?

• Who controls (copy, delete, etc.) data generated in vehicle?

• Where can data generated from single vehicles or in between vehicle be stored legally?

Much work is required to answer these and similar questions, to establish security in vehicles,
and ensure the privacy of owners and passengers. As the decision to buy a vehicle is a highly
emotional one, including brand perception and personal aspects, the impact of security on this
can form an interesting research topic.

These aspects above are of increasing importance when considering the advent of autonomous
vehicles. With increasing autonomy, more control is given to potentially insecure systems.
These systems are typically using machine learning to improve their behavior. For this, data is
transfered to the Original Equipment Manufacturer (OEM), requiring an Internet connection.
This potentially opens access to critical systems for attackers. Security, Privacy and liability
questions are of even higher importance in such systems.

This thesis lays the groundwork to answer some of the technical aspects in automotive se-
curity. But due to the heterogeneity of OEMs, supply chains, electronic components, networks,
legal frameworks, social values, etc. this thesis is a starting point into the area of automotive
security. Significant work is required to combine, integrate and ensure security, throughout
the design and construction process, throughout the life cycle, and in the minds of the vehicle
owners.
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The increasing connectivity among vehicles increases their at-
tack surface and challenges their security. Combining security 
and automotive real-time systems is challenging in many ways. 
The heterogeneity and complexity of automotive communica-
tion systems and their interconnections make the quantificati-
on of security a difficult task. Lower computational capabilities 
and network bandwidth, coupled with the real-time behavior in 
automotive systems makes implementation of computation and 
bandwidth intensive security challenging. New solutions are re-
quired to address security in the automotive domain in context 
of not only functional, but also real-time requirements.

Philipp Mundhenk explores approaches to improve analysis and 
design of security for in-vehicle networks. Therefore, a design
time security analysis, a runtime authentication and autho-
rization framework, and a flexible scheduling scheme, efficiently 
enabling security on FlexRay are presented. The infotainment 
system of an electric taxi is introduced as a design experience 
to demonstrate the necessity of new approaches in automotive 
security.
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